Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 101-109    DOI: 10.11902/1005.4537.2020.216
  研究报告 本期目录 | 过刊浏览 |
2A12铝合金锆基转化膜的制备及性能研究
于宏飞1,2, 邵博3, 张悦1, 杨延格2()
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.鞍钢集团工程技术有限公司 鞍山 114021
Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy
YU Hongfei1,2, SHAO Bo3, ZHANG Yue1, YANG Yange2()
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Ansteel Engineering Technology Co. , Ltd. , Anshan 114021, China
全文: PDF(17317 KB)   HTML
摘要: 

在2A12铝合金基体上制备了无铬锆基转化膜,对锆基转化膜的耐腐蚀性能、前处理及成膜过程中的显微形貌演变和膜层成分进行了表征,重点探究了第二相对成膜过程的影响。结果表明,基体表面第二相对锆基转化膜成膜的影响主要体现在三方面:第一,碱洗和酸洗前处理后,合金表面第二相和大量蚀坑的存在造成基体表面凹凸不平;第二,成膜过程中,第二相的存在不利于转化膜颗粒的均匀形核和长大;第三,成膜完成后,第二相被腐蚀破坏,严重影响膜层的致密性和均匀性。

关键词 转化膜锆基铝合金腐蚀第二相    
Abstract

A Cr-free Zr-based conversion coating (ZrCC) was prepared on 2A12 Al-alloy, which then was characterized in terms of the surface micromorphology evolution and composition of 2A12 Al-alloy during pretreatment and conversion process, especially, the influence of the second phase of the alloy on the conversion process. The results show that first, the pretreatment process resulted in a very rough surface of the 2A12 Al-alloy, on which there exist many pits and residual second phases; next, the second phase particulates in 2A12 Al-alloy were unfavorable to the uniform nucleation and growth of conversion coating granulates during conversion process; and third, after conversion process, the second phase particulates on the 2A12 Al-alloy surface were seriously destroyed, that brough strong impact on the compactness and uniformity of the coating.

Key wordsconversion coating    Zr-based    aluminium Al-alloy    corrosion    second phase
收稿日期: 2020-10-27     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2019YFC0312100);民机专项
通讯作者: 杨延格     E-mail: ygyang@imr.ac.cn
Corresponding author: YANG Yange     E-mail: ygyang@imr.ac.cn
作者简介: 于宏飞,男,1996年生,硕士生

引用本文:

于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
Hongfei YU, Bo SHAO, Yue ZHANG, Yange YANG. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 101-109.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.216      或      https://www.jcscp.org/CN/Y2021/V41/I1/101

图1  2A12铝合金基体及ZrCC的极化曲线
图2  2A12铝合金基体与ZrCC电化学阻抗谱
图3  2A12铝合金基体与ZrCC的拟合电路
MaterialRs / Ω·cm2Y0 / Ω-1·cm-2·s-1nRf / Ω·cm2Y0 / Ω-1·cm-2·s-1nRct / Ω·cm2
Bare15.212.696×10-50.933235321.266×10-40.83782.064×104
ZrCC15.462.325×10-40.816818487.387×10-40.9787574.9
表1  2A12铝合金基体与锆基转化膜的拟合参数结果
图4  2A12铝合金SEM像及EDS面扫图像
图5  前处理过程中SEM像
图6  酸洗后不同位置EDS结果
图7  2A12铝合金在锆基转化液中OCP随浸泡时间的变化曲线
图8  2A12铝合金ZrCC在转化液中不同成膜时间的SEM形貌
图9  成膜后的SEM显微形貌
PositionFNaAlCuFeMnPZrMg
428.4210.0545.666.61---0.260.371.290.81
55.751.2657.273.77---------5.041.28
611.357.2830.9632.44---------3.96128
表2  ZrCC表面与截面EDS分析结果
图10  2A12铝合金ZrCC的XPS总谱
图11  2A12铝合金ZrCC中不同元素的高分辨XPS谱
1 Bethencourt M, Botana F J, Cano M J, et al. Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms [J]. Corros. Sci., 2009, 51: 518
2 Boag A, Taylor R J, Muster T H, et al. Stable pit formation on AA2024-T3 in a NaCl environment [J]. Corros. Sci., 2010, 52: 90
3 Boag A, Hughes A E, Wilson N C, et al. How complex is the microstructure of AA2024-T3? [J]. Corros. Sci., 2009, 51: 1565
4 Din R U, Bordo K, Jellesen M S, et al. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance [J]. Surf. Coat. Technol., 2015, 276: 106
5 Li S H, Yin Y J, Liu J R, et al. Surface treatment and its application to aluminum and aluminum alloy [J]. Spec. Cast. Nonferrous Alloys, 2001, (2): 54
5 李淑华, 尹玉军, 刘家儒等. 铝及铝合金的表面处理及应用 [J]. 特种铸造及有色合金, 2001, (2): 54
6 Li H, Wang M L. The process research to the chemical conversion film of aluminium [J]. Mod. Paint Finish., 2010, 13(3): 64
6 李航, 王明磊. 铝材的化学转化膜工艺探讨 [J]. 现代涂料与涂装, 2010, 13(3): 64
7 Liu Y, Skeldon P, Thompson G E, et al. Chromate conversion coatings on aluminium-copper alloys [J]. Corros. Sci., 2005, 47: 341
8 Campestrini P, Terryn H, Vereecken J, et al. Chromate conversion coating on aluminum alloys: III. Corrosion protection [J]. J. Electrochem. Soc., 2004, 151: B370
9 Zhao J, Xia L, Sehgal A, et al. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3 [J]. Surf. Coat. Technol., 2001, 140: 51
10 Verdalet-Guardiola X, Fori B, Bonino J P, et al. Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy [J]. Corros. Sci., 2019, 155: 109
11 Campestrini P, van Westing E P M, de Wit J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part I: Nucleation and growth [J]. Electrochim. Acta, 2001, 46: 2553
12 Long Z L, Zhou Y C, Xiao L. Characterization of black chromate conversion coating on the electrodeposited zinc-iron alloy [J]. Appl. Surf. Sci., 2003, 218: 124
13 Brown G M, Shimizu K, Kobayashi K, et al. The development of chemical conversion coatings on aluminium [J]. Corros. Sci., 1993, 35: 253
14 Brown G M, Shimizu K, Kobayashi K, et al. The morphology, structure and mechanism of growth of chemical conversion coatings on aluminium [J]. Corros. Sci., 1992, 33: 1371
15 Chidambaram D, Clayton C R, Halada G P. The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys [J]. Electrochim. Acta, 2006, 51: 2862
16 Hinton B R W, Wilson L. The corrosion inhibition of zinc with cerous chloride [J]. Corros. Sci., 1989, 29: 967
17 Yoganandan G, Premkumar K P, Balaraju J N. Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy [J]. Surf. Coat. Technol., 2015, 270: 249
18 Bethencourt M, Botana F J, Cano M J, et al. High protective, environmental friendly and short-time developed conversion coatings for aluminium alloys [J]. Appl. Surf. Sci., 2002, 189: 162
19 Swain G M, Li L L. Formation and structure of trivalent chromium process coatings on aluminum alloys 6061 and 7075 [J]. Corrosion, 2013, 89: 1205
20 Guo Y, Frankel G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
21 Saillard R, Viguier B, Odemer G, et al. Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer [J]. Corros. Sci., 2018, 142: 119
22 Viroulaud R, Światowska J, Seyeux A, et al. Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy [J]. Appl. Surf. Sci., 2017, 423: 927
23 Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of Ti–Zr based conversion layers on AA6060 aluminium [J]. Surf. Coat. Technol., 2004, 184: 278
24 George F O, Skeldon P, Thompson G E. Formation of zirconium-based conversion coatings on aluminium and Al-Cu alloys [J]. Corros. Sci., 2012, 65: 231
25 Coloma P S, Izagirre U, Belaustegi Y, et al. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications [J]. Appl. Surf. Sci., 2015, 345: 24
26 Milošev I, Frankel G S. Review—conversion coatings based on zirconium and/or titanium [J]. J. Electrochem. Soc., 2018, 165: C127
27 Liu Y, Yang Y G, Zhang C Y, et al. Protection of AA5083 by a zirconium-based conversion coating [J]. J. Electrochem. Soc., 2016, 163: C576
28 Hosseini R M, Sarabi A A, Mohammadloo H E, et al. The performance improvement of Zr conversion coating through Mn incorporation: With and without organic coating [J]. Surf. Coat. Technol., 2014, 258: 437
29 Zhan W, Qian X Z, Gui B Y, et al. Preparation and corrosion resistance of titanium-zirconium-cerium based conversion coating on 6061 aluminum alloy [J]. Mater. Corros., 2020, 71: 419
30 Chen X M, Li G Y, Lian J S, et al. An organic chromium-free conversion coating on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2008, 255: 2322
31 Li L L, Whitman B W, Munson C A, et al. Structure and corrosion performance of a non-chromium process (NCP) Zr/Zn pretreatment conversion coating on aluminum alloys [J]. J. Electrochem. Soc., 2016, 163: C718
32 Li L L, Whitman B W, Swain G M. Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3 [J]. J. Electrochem. Soc., 2015, 162: C279
33 Carreira A F, Pereira A M, Vaz E P, et al. Alternative corrosion protection pretreatments for aluminum alloys [J]. J. Coat. Technol. Res., 2017, 14: 879
34 Golru S S, Attar M M, Ramezanzadeh B. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating [J]. Appl. Surf. Sci., 2015, 345: 360
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[4] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[5] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[6] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[7] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[8] 王永祥, 何柏林, 李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[9] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[10] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[11] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[12] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[13] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[14] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[15] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.