Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 96-100    DOI: 10.11902/1005.4537.2020.008
  研究报告 本期目录 | 过刊浏览 |
盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究
黄鹏, 高荣杰(), 刘文斌, 尹续保
中国海洋大学材料科学与工程学院 青岛 266100
Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties
HUANG Peng, GAO Rongjie(), LIU Wenbin, YIN Xubao
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(8439 KB)   HTML
摘要: 

通过盐溶液对X65管线钢镀镍表面进行化学刻蚀,然后经过全氟辛基三氯硅烷修饰,成功地在基底上制备出了超疏水疏油性能的表面,并通过电化学测试研究了双疏表面的耐腐蚀性能。结果表明:含钴镍离子的溶液80 ℃恒温刻蚀6 h后,再经过全氟辛基三氯硅烷修饰2 h,得到了与去离子水、乙二醇的接触角分别为160°和152°的超双疏表面。相较于镀镍试样表面,极化曲线表明超双疏表面的腐蚀速率明显降低,电化学阻抗测试图谱表明超双疏表面的耐蚀性得到了提高。

关键词 盐刻蚀镀镍超双疏接触角耐蚀性    
Abstract

A Ni-plate was firstly electrodeposited on X65 pipeline steel surface, which then was chemically etched by salt solution, and finally subjected to modification treatment with perfluorohexylethyltrichlorosilane, so that the surface of Ni-plate was endowed with super-hydrophobic and oil-phobic performance. The corrosion behavior of the modified Ni-plate was studied by potentiodynamic scanning. The result showed that after being etched for 6 h at 80 ℃ in the solution containing cobalt and nickel ions, and modified with perfluorooctyltrichlorosilane for 2 h, the modified Ni-plate surface presented contact angles of 160° and 152° for deionized water and glycol respectively. Compared with the original Ni-plate surface, the modified ones presented significantly lower corrosion rate, namely, better corrosion resistance.

Key wordssalt solution etching    Ni-plate    superamphiphobic    contact angle    anti-corrosion property
收稿日期: 2020-02-17     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金-山东省联合基金(U1706221)
通讯作者: 高荣杰     E-mail: dmh206@ouc.edu.cn
Corresponding author: GAO Rongjie     E-mail: dmh206@ouc.edu.cn
作者简介: 黄鹏,男,1992年生,硕士生

引用本文:

黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
Peng HUANG, Rongjie GAO, Wenbin LIU, Xubao YIN. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 96-100.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.008      或      https://www.jcscp.org/CN/Y2021/V41/I1/96

图1  盐溶液刻蚀6 h后的表面形貌和未刻蚀表面形貌
图2  为去离子水和乙二醇在X65管线钢镀镍原始表面和超双疏表面的接触角
图3  X65管线钢镀镍盐刻蚀表面的XRD谱
图4  原始试样、盐溶液刻蚀试样和超双疏表面试样在3.5%NaCl溶液中的动电位极化曲线
SampleEcorr / VIcorr / A·cm-2
Original surface-0.3957.59×10-6
Salt solution etching surface-0.3471.69×10-7
Superamphiphobic surface-0.1693.31×10-8
表1  原始试样、盐溶液刻蚀试样和超双疏试样的动电位极化曲线的拟合参数
图5  镀镍试样及超双疏试样在3.5%NaCl溶液中电化学阻抗谱
SampleRs / Ω·cm2Cd / FRct / kΩ·cm2Cc / FRc / kΩ·cm2
Nickel-plated specimen10.801.826×10-634.341.038×10-5278.9
Superamphiphobic specimen20.436.099×10-7898.508.143×10-7584.0
表2  镀镍试样以及超双疏试样电化学阻抗Nyquist谱的电路拟合参数
1 Nosonovsky M. Multiscale roughness and stability of superhydrophobic biomimetic interfaces [J]. Langmuir, 2007, 23: 3157
2 Erbil H Y, Demirel A L, Avcı Y, et al. Transformation of a simple plastic into a superhydrophobic surface [J]. Science, 2003, 299: 1377
3 Blossey R. Self-cleaning surfaces-virtual realities [J]. Nat. Mater., 2003, 2: 301
4 Xiu Y H, Zhu L B, Hess D W, et al. Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity [J]. Nano Lett., 2007, 7: 3388
5 Gao X F, Jiang L. Water-repellent legs of water striders [J]. Nature, 2004, 432: 36
6 Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings [J]. Soft Matter, 2007, 3: 178
7 Yamauchi Y, Tenjimbayashi M, Samitsu S, et al. Durable and flexible superhydrophobic materials: Abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant composite with porcupinefish-like structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 32381
8 Sun T L, Feng L, Gao X F, et al. Bioinspired surfaces with special wettability [J]. Acc. Chem. Res., 2005, 38: 644
9 Hu L T, Zhang L, Wang D R, et al. Fabrication of biomimetic superhydrophobic surface based on nanosecond laser-treated titanium alloy surface and organic polysilazane composite coating [J]. Colloids Surf., 2018, 555A: 515
10 Yin Y J, Huang R H, Zhang W, et al. Superhydrophobic-superhydrophilic switchable wettability via TiO2 photoinduction electrochemical deposition on cellulose substrate [J]. Chem. Eng. J., 2016, 289: 99
11 Shirtcliffe N J, McHale G, Newton M I, et al. Intrinsically superhydrophobic organosilica sol-gel foams [J]. Langmuir, 2003, 19: 5626
12 Ozkan E, Crick C C, Taylor A, et al. Copper-based water repellent and antibacterial coatings by aerosol assisted chemical vapour deposition [J]. Chem. Sci., 2016, 7: 5126
13 Jin C D, Li J P, Han S J, et al. A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface [J]. Appl. Surf. Sci., 2014, 320: 322
14 Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel [J]. Corros. Sci., 2012, 63: 323
15 Zhou N, Ding Y, Ma L Q. A study of Nickel plating on Q235 steel surface and its properties [J]. Electroplat. Pollut. Control, 2013, 33(1): 4
15 周楠, 丁毅, 马立群. Q235钢表面电镀镍及其性能的研究 [J]. 电镀与环保, 2013, 33(1): 4
16 Peng X, Zhang Y, Zhao J, et al. Electrochemical corrosion performance in 3.5%NaCl of the electrodeposited nanocrystalline Ni films with and without dispersions of Cr nanoparticles [J]. Electrochim. Acta, 2006, 51: 4922
17 Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
18 Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
[1] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[2] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[3] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[5] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[7] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[8] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[9] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[10] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[11] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[12] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[13] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[14] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[15] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.