Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (5): 448-454    DOI: 10.11902/1005.4537.2019.281
  海洋材料腐蚀与防护专辑 本期目录 | 过刊浏览 |
除冰盐环境下桥梁钢的耐腐蚀性能研究
李琳1,2(), 陈义庆1,2, 高鹏1,2, 艾芳芳1,2, 钟彬1,2, 伞宏宇1,2, 杨颖2
1 海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
2 鞍钢集团钢铁研究院 鞍山 114009
Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments
LI Lin1,2(), CHEN Yiqing1,2, GAO Peng1,2, AI Fangfang1,2, ZHONG Bin1,2, SAN Hongyu1,2, YANG Ying2
1 State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China
2 Iron & Steel Research Institute of ANGANG Group, Anshan 114009, China
全文: PDF(6916 KB)   HTML
摘要: 

采用干湿交替腐蚀实验和全浸腐蚀实验结合锈层物相分析,研究了桥梁钢Q345qENH、Q420qENH和对比钢种Q345qE在除冰盐环境下的腐蚀行为。结果表明:耐候桥梁钢Q345qENH、Q420qENH在除冰盐腐蚀环境的耐蚀能力明显优于Q345qE钢;同种桥梁钢在不同的结构部位受除冰盐腐蚀程度相差较大,Q345qENH、Q420qENH和Q345qE钢干湿交替腐蚀的加速倍率分别是其全浸腐蚀的26.88倍、27.5倍和33.75倍;干湿交替腐蚀实验随着时间的延长锈层物相结构及含量均有所变化,绝缘的非活性物质α-FeOOH相的增加是导致实验后期腐蚀速率下降的重要原因。

关键词 桥梁钢除冰盐干湿交替全浸腐蚀行为    
Abstract

The corrosion behavior of bridge steels Q345qENH and Q420qENH in deicing salt was studied by means of wet-dry cyclic corrosion test, immersion corrosion test and rust scale characterization, while taking Q345qE steel as comparison. The results indicate that the corrosion resistance of the Q345qENH and Q420qENH weathering bridge steels was better than that of the Q345qE steel. The dry-wet cyclic corrosion test results reveal that the Q345qENH, Q420qENH and Q345qE steels show corrosion rates of 26.88, 27.5, and 33.75 times higher than those measured in immersion corrosion test, respectively. During dry-wet cyclic corrosion test, the structure and composition of the formed rust scales changed and the amount of α-FeOOH phase increased gradually with time, which may be an important reason leading to the decrease of corrosion rate at the end of dry-wet cyclic test.

Key wordsbridge steel    deicing salt    dry-wet cyclic    immersion    corrosion behavior
收稿日期: 2019-12-31     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2017YFB0304800)
通讯作者: 李琳     E-mail: ansteellilin@163.com
Corresponding author: LI Lin     E-mail: ansteellilin@163.com
作者简介: 李琳

引用本文:

李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
Lin LI, Yiqing CHEN, Peng GAO, Fangfang AI, Bin ZHONG, Hongyu SAN, Ying YANG. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments. Journal of Chinese Society for Corrosion and protection, 2020, 40(5): 448-454.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.281      或      https://www.jcscp.org/CN/Y2020/V40/I5/448

SampleCSiMnPSAlsNiCuMoTiNbCrFe
Q345qENH0.0550.261.390.0120.00350.034Total 1.001Bal.
Q420qENH0.0550.351.550.0200.0030.025Total 1.187Bal.
Q345qE0.1500.301.460.0130.00360.041Total 0.182Bal.
表1  实验钢的化学成分 (mass fraction / %)
图1  除冰盐干湿交替实验的腐蚀形貌
图2  3种试样干湿交替32 d后的SEM形貌
图3  干湿交替实验3种桥梁钢的腐蚀减薄量
图4  3种桥梁钢干湿交替实验腐蚀减薄量拟合曲线
SampleAnPower function fittingCorrelation coefficient / R2
Q345qENH0.00680.5598D=0.0068t0.55980.956
Q420qENH0.00630.5643D=0.0063t0.56430.947
Q345qE0.00850.5766D=0.0085t0.57660.958
表2  干湿交替实验回归方程
图5  除冰盐全浸实验8 d腐蚀形貌
图6  全浸实验3种桥梁钢的腐蚀减薄量
图7  3种桥梁钢全浸实验腐蚀减薄量拟合曲线
SampleAnPower function fittingCorrelation coefficient / R2
Q345qENH0.001170.54626D=0.00117t0.546260.981
Q420qENH0.001280.52377D=0.00128t0.523770.988
Q345qE0.001270.55827D=0.00127t0.558270.976
表3  全浸实验回归方程
图8  干湿交替腐蚀产物XRD谱
Sampleα-FeOOHβ-FeOOHγ-FeOOHCaCO3Fe3O4NaCl
Q345qENH-2 d6214231------
Q345qENH-32 d1635618205
Q420qENH-2 d7184530------
Q420qENH-32 d10447---318
Q345qE-2 d7184431------
Q345qE-32 d7.918.89.923.833.75.9
表4  干湿交替腐蚀产物物相组成 (mass fraction / %)
[1] Zhang Z M, Du S J, Zhao S T. A research on influence and countermeasure of the snow-melting agent to traffic facilities and environment [J]. Shanxi Arch., 2010, 36(23): 345
[1] (张志敏, 杜素军, 赵世涛. 融雪剂对交通设施和环境的影响及对策研究 [J]. 山西建筑, 2010, 36(23): 345)
[2] Hong N F. Snow thaw agent and its corrosion harmfulness on infrastructure [J]. Arch. Technol., 2004, 35: 256
[2] (洪乃丰. 融雪剂及其对基础设施的腐蚀危害 [J]. 建筑技术, 2004, 35: 256)
[3] Miyamoto A. Kawamura K. Nakamura H. Bridge management system and maintenance optimization for existing bridges [J]. Com. Civil Infrast. Eng., 2000, 15: 45
[4] Yang Z B. On deicing salt damage and the impact on the bridge [J]. China Build. Mater. Sci. Technol., 2014, 23(3): 122
[4] (杨哲斌. 融雪剂对桥梁的破坏和影响 [J]. 中国建材科技, 2014, 23(3): 122)
[5] Chen Z W, Zhang L T, He E L, et al. Corrosion detection of road deicing salt on carbon steel and corrosion reducing treatments [J]. Highway, 2011, (12): 177
[5] (陈宗伟, 张立塔, 赫恩龙等. 公路融雪剂碳钢腐蚀性检测方法及缓蚀工艺研究 [J]. 公路, 2011, (12): 177)
[6] Shi J, Yang F G, Zhou N C. Damage reasons and treatment measures of expressway bridge deck pavement in chilly area [J]. Liaoning Comm. Sci. Technol., 2004, (2): 20
[6] (石坚, 杨芳国, 周乃承. 寒冷地区高速公路桥面铺装过早破损原因分析和处理方法 [J]. 辽宁交通科技, 2004, (2): 20)
[7] Liu S W, Liu P C. Mechanism analysis and prevention measures of the corrosion of bridge components by chlorine salt snow melt agent [J]. Highways Trans. Inner Mong., 2012, 3(6): 16
[7] (刘少伟, 刘鹏冲. 氯盐融雪剂腐蚀桥梁构件的机理分析及防治对策 [J]. 内蒙古公路与运输, 2012, 3(6): 16)
[8] Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Sci. Corros. Prot., 2019, 39: 319
[8] (郭铁明, 张延文, 秦均山等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319)
[9] Zhao G N, Wu D D. A study on the hazard and control of deicing salt [J]. Environ. Sci. Manag., 2010, 35(4): 56
[9] (赵光楠, 吴德东. 融雪剂的危害与防治研究 [J]. 环境科学与管理, 2010, 35(4): 56)
[10] Yao Y, Yao L. Research progress in impact of chlorine snowmelt agent (salt) on transport infrastructure [J]. Contemp. Chem. Ind., 2015, 44: 1359
[10] (姚艺, 姚乐. 含氯融雪剂 (盐) 对交通基础设施的影响研究进展 [J]. 当代化工, 2015, 44: 1359)
[11] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
[12] Liang J M, Tang D, Wu H B, et al. Cyclic corrosion behavior of E36 low-alloy steel in a simulated cargo oil tank upper deck environment corresponding to IMO standard [J]. Chin. J. Mater. Res., 2014, 28: 433
[12] (梁金明, 唐荻, 武会宾等. 基于IMO标准的E36级低合金船板钢货油舱上甲板环境全周期腐蚀行为与机理 [J]. 材料研究学报, 2014, 28: 433)
[13] Pan C, Han W, Wang Z Y, et al. Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere [J]. J. Mater. Eng. Perform., 2016, 25: 5382
[14] Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review [J]. Corros. Sci., 2013, 77: 6
[15] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
[15] (柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365)
[16] Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
[16] (汪川, 曹公旺, 潘辰等. 碳钢, 耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39)
[17] Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
[18] Yamashita M, Nagano H, Misawa T, et al. Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North America [J]. ISIJ Int., 1998, 38: 285
[1] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[4] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[5] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[6] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[7] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[8] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[9] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[10] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[11] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[12] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[14] 徐致孝,周和荣,姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
[15] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.