Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (1): 18-25    DOI: 10.11902/1005.4537.2016.223
  研究报告 本期目录 | 过刊浏览 |
海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响
张杰1(), 胡秀华1,2, 郑传波2, 段继周1, 侯保荣1
1 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
2 江苏科技大学材料科学与工程学院 镇江 212003
Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium
Jie ZHANG1(), Xiuhua HU1,2, Chuanbo ZHENG2, Jizhou DUAN1, Baorong HOU1
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 College of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
全文: PDF(4408 KB)   HTML
摘要: 

采用荧光显微技术、表面分析技术以及电化学测试方法研究了钙质层腐蚀行为与小球藻附着的相互影响。荧光分析表明,48 h之后小球藻在Q235碳钢表面附着几乎达到吸脱附平衡状态,小球藻在预先沉积钙质层试样表面的初始附着以吸附为主,之后开始分裂增殖,此外钙质层能够促进小球藻的附着。表面形貌和元素分析及电化学测试结果表明,钙质层表面不均匀形成氧浓差电池,加速金属的腐蚀,造成材料的局部腐蚀;钙质层与生物膜共同形成的复合膜结构较为致密且与基体的结合力好,能够抑制电荷的传递和O2向基体表面扩散,抑制金属的腐蚀。

关键词 Q235碳钢小球藻钙质层电化学阻抗谱腐蚀行为    
Abstract

It is known that calcareous deposit formed on the surface of metallic material may have effect on the adhesion of marine micro-organism to and the corrosion behavior of the substrate material. Meanwhile, micro-organisms may in turn affect the formation process of calcareous layer. To clearly understand the above mentioned phenomena, the electrochemical behavior of the Q235 carbon steel without and with a pre-deposited calcareous layer in the f/2 culture media with the absence and presence of chlorella vulgaris respectively, as well as, the adhesion behavior of chlorella vulgaris on the substrate were investigated by using fluorescence microscopy, surface analysis techniques and electrochemical measure method. Results show that the adhesion process of chlorella vulgaris reached the equilibrium phase of adsorption-desorption after immersion of the steel in the medium for 48 h. Absorption is the decisive step in the initial attachment stage of chlorella vulgaris on the steel with calcareous deposit, and then the adherent microalgae began to proliferate. The calcareous deposit could promote the adhesion of microalgae, however, the calcareous deposit was apt to spall off in the f/2 culture medium without chlorella vulgaris. During the immersion process, composite films of calcareous deposit and microalgae may formed on the steel surface, which was compact with good adhesion to the substrate and presented blockage effect to the charge transfer and inward diffusion of oxygen, thereby can effectively inhibit the corrosion of the steel.

Key wordsQ235 carbon steel    chlorella vulgaris    calcareous deposit    EIS    corrosion behavior
收稿日期: 2016-11-23     
ZTFLH:  TG174.3  
基金资助:国家自然科学基金 (41376003和41006054) 及中国科学院战略性先导科技专项 (A类) (XDA13040405)
作者简介:

作者简介 张杰,男,1976年生,研究员

引用本文:

张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 18-25.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.223      或      https://www.jcscp.org/CN/Y2018/V38/I1/18

图1  沉积钙质层实验装置示意图
图2  裸钢和沉积钙质层试样在小球藻培养液中浸泡不同时间后的荧光显微图
Time / h Bare steel Calcareous deposit
3 0.12% 7.61%
6 3.15% 13.40%
24 14.10% 24.87%
48 17.59% 29.08%
72 20.08% 42.01%
表1  小球藻在试样表面覆盖率随浸泡时间的变化
图3  海水中金属表面的微生物吸附过程
图4  沉积钙质层的Q235钢试样在不含小球藻和含小球藻培养液中浸泡10 d后的表面形貌
图5  沉积钙质层的Q235钢试样在不含小球藻和含小球藻培养液中浸泡10 d后的EDS分析结果
Condition Na Mg Al Si P S Balance
Without chlorella vulgaris 3.096 0.168 0.048 0.769 0.096 4.993 29.504
With chlorella vulgaris 1.908 0.399 0.083 1.146 0.0133 0.0549 44.714
表2  沉积钙质层的Q235钢试样在不含小球藻和含小球藻培养液中浸泡10 d后表面元素含量
图6  沉积钙质层的Q235钢试样在不含小球藻和含小球藻培养液中的电化学阻抗谱
图7  沉积钙质层的Q235钢试样在f/2培养基中EIS的等效电路图
Immerse time / d Rsol Qf Rf Qdl Rct
Ωcm2 Yf / 10-6 Ω-1cm-2sn nf Ωcm2 Ydl / 10-6 Ω-1cm-2sn ndl 104 Ωcm2
1 6.027 251.60 0.681 946.10 428.6 0.580 2.676
3 22.550 196.50 0.745 174.60 697.6 0.670 1.347
5 24.200 135.50 0.801 167.30 728.3 0.637 1.227
7 26.400 379.20 0.719 682.20 791.6 0.603 1.369
9 10.170 388.90 0.621 382.40 504.4 0.720 0.929
11 29.310 302.60 0.503 91.30 831.0 0.618 0.748
13 5.766 1996.00 0.384 235.50 907.7 0.603 0.568
15 4.335 60.20 0.841 130.60 521.6 0.607 0.293
表3  沉积钙质层的Q235碳钢试样在不含小球藻培养液中的EIS等效电路拟合值
Immerse time / d Rsol Qf Rf Qdl Rct
Ωcm2 Yf / 10-6 Ω-1cm-2sn nf Ωcm2 Ydl / 10-6 Ω-1cm-2sn ndl 104 Ωcm2
1 6.635 171.50 0.689 631.4 138.9 0.732 1.227
3 9.250 243.80 0.643 1649.0 169.3 0.862 1.183
5 8.876 76.47 0.594 1717.0 110.5 0.584 1.595
7 22.160 305.90 0.566 1422.0 100.1 0.662 3.426
9 23.870 327.90 0.564 1304.0 105.8 0.583 2.808
11 9.784 70.50 0.533 651.7 223.0 0.638 1.211
13 4.335 45.13 0.597 371.5 223.8 0.644 1.060
15 4.335 497.60 0.588 736.6 208.7 0.641 1.038
表4  沉积钙质层的Q235钢试样在小球藻培养液中的EIS等效电路拟合值
[1] Wei G, Xiong R C.Green chemistry and perspectives on corrosion protection[J]. Corros. Sci. Prot. Technol., 2001, 13: 33(魏刚, 熊蓉春. 绿色化学与防腐蚀技术的发展方向[J]. 腐蚀科学与防护技术, 2001, 13: 33)
[2] Cao Z Y.Study for calcareous deposits under initial cathodic protection in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2010(曹振宇. 模拟深海环境阴极保护初期钙镁沉积层的研究 [D]. 青岛: 中国海洋大学, 2010)
[3] Hu J J, Shi M W.Corrosion and anticorrosion technology in offshore platforms[J]. China Offshore Platform, 2008, 23(6): 39(胡津津, 石明伟. 海洋平台的腐蚀及防腐技术[J]. 中国海洋平台, 2008, 23(6): 39)
[4] Wen G M, Zheng F Y.Formation and application of calcareous deposits in the cathodic protection of seawater[J]. Corros. Prot., 1995, 16: 50(温国谋, 郑辅养. 海水中阴极保护时钙质沉积层的形成及其应用[J]. 腐蚀与防护, 1995, 16: 50)
[5] Rousseau C, Baraud F, Leleyter L, et al.Calcareous deposit formed under cathodic protection in the presence of natural marine sediments: A 12 month experiment[J]. Corros. Sci., 2010, 52: 2206
[6] Barchiche C, Deslouis C, Festy D, et al.Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg(II)[J]. Electrochim. Acta, 2003, 48: 1645
[7] Deslouis C, Festy D, Gil O, et al.Characterization of calcareous deposits in artificial sea water by impedance techniques—I. Deposit of CaCO3 without Mg(OH)2[J]. Electrochim. Acta, 1998, 43: 1891
[8] Yang Y F, Scantlebury J D, Koroleva E V.A study of calcareous deposits on cathodically protected mild steel in artificial seawater[J]. Metals, 2015, 5: 439
[9] Deslouis C, Falaras P, Gil O, et al.Influence of clay on calcareous deposit in natural and artificial sea water[J]. Electrochim. Acta, 2006, 51: 3173
[10] Sosa E, García-Arriaga V, Castaneda H.Impedance distribution at the interface of the API steel X65 in marine environment[J]. Electrochim. Acta, 2006, 51: 1855
[11] Eashwar M, Sathish Kunar P, Ravishankar R, et al.Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater[J]. Biofouling, 2013, 29: 185
[12] Wang J W, Zhang J, Chen S G, et al.Influence of calcareous deposit on corrosion behavior of Q235 carbon steel in f/2 culture medium with Amphora[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 535(汪江伟, 张杰, 陈守刚等. 钙质层对Q235碳钢在含双眉藻f/2培养基中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 535)
[13] Irving T E, Allen D G.Species and material considerations in the formation and development of microalgal biofilms[J]. Appl. Microbiol. Biotechnol., 2011, 92: 283
[14] Wang J W.Study of calcareous deposit formed by cathodic protection for anticorrosion of Q235 carbon steel in bio-fouling environment [D]. Qingdao: Ocean University of China, 2015(汪江伟. 海洋污损生物环境下钙质层对Q235碳钢腐蚀行为影响研究 [D]. 青岛: 中国海洋大学, 2015)
[15] Liu S X, Zhang D.Effect of microalgae on electrochemical corrosion behavior of 316L stainless steel in f/2 medium [A]. Chinese Society for Oceanology and Limnology[C]. Qingdao: Chinese Society for Oceanology and Limnology, 2012(刘淑霞, 张盾. 微藻对316L不锈钢在f/2培养液中电化学腐蚀行为影响研究 [A]. 中国海洋湖沼学会第十次会员代表大会暨2012海洋腐蚀与生物污损学术研讨会论文集[C]. 青岛: 中国海洋湖沼学会, 2012)
[16] Wirtanen G, Ahola H, Mattila-Sandholm T.Evaluation of cleaning procedures in elimination of biofilm from stainless steel surfaces in open process equipment[J]. Food Bioprod. Process., 1995, 73C: 9
[17] Wang W.Study on the relationship between microbiofilm and the electrochemical behavior of metal in Marine Environment [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences,2003(王伟. 海洋环境中微生物膜与金属电化学状态相关性研究 [D].青岛: 中国科学院海洋研究所, 2003)
[18] Whitehead K A, Rogers D, Colligon J, et al.Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal[J]. Colloid. Surf. B- Biointerfaces, 2006, 51: 44
[19] Wang W, Wang J, Xu H B, et al.Influence of biofilms adsorption kinetics on the open-circuit-potential changes of passive metals in seawater[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 65(王伟, 王佳, 徐海波等. 海洋环境中微生物膜吸附动力学过程对钝态金属开路电位变化特征的影响[J]. 中国腐蚀与防护学报, 2006, 26: 65)
[20] Ji W S, Xu B, Xu H S, et al.Studies on the attachment of marine bacteria to biotic and abiotic surfaces[J]. J. Ocean Univ. Qingdao, 1991, 21(2): 61(纪伟尚, 许兵, 徐怀恕等. 海洋细菌在生物表面和非生物表面附着的研究[J]. 青岛海洋大学学报, 1991, 21(2): 61)
[21] Ates M.Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces[J]. Prog. Org. Coat., 2011, 71: 1
[22] Yi W, Zhang D, Liu H Q, et al.Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions[J]. Electrochim. Acta, 2010, 55: 1528
[23] Xu H L, Jiao X M, Liu S S.Fluorescence measurement of surface dielectric constant of cell membrane[J]. Acta Biophys. Sin., 1993, 9: 234(徐海楼, 焦选茂, 刘树森. 生物膜表面介电常数的荧光测量[J]. 生物物理学报, 1993, 9: 234)
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[9] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[14] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[15] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.