Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 522-528    DOI: 10.11902/1005.4537.2016.160
  研究报告 本期目录 | 过刊浏览 |
环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值
刘栓1,周开河2,方云辉2,徐孝忠2,江炯2,郭小平3,郑文茹1,蒲吉斌1,3(),王立平1,3
1. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室浙江省海洋材料与防护技术重点实验室 宁波 315201
2 国网浙江省电力公司宁波供电公司 宁波 315201
3. 芜湖春风新材料有限公司 芜湖 241000
Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values
Shuan LIU1,Kaihe ZHOU2,Yunhui FANG2,Xiaozhong XU2,Jiong JIANG2,Xiaoping GUO3,Wenru ZHEN1,Jibin PU1,3(),Liping WANG1,3
1. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2. State Grid Zhejiang Electric Power Corporation Ningbo Power Supply Company, Ningbo 315201, China
3. Wuhu Spring New Material Co., Ltd, Wuhu 241000, China
全文: PDF(884 KB)   HTML
摘要: 

研究纯Zn在模拟大气腐蚀环境 (饱和Zn(OH)2溶液) 中的初期电化学腐蚀机理。采用极化曲线和电化学阻抗谱,结合扫描电子显微镜,探究Cl-浓度和pH值对纯Zn在饱和Zn(OH)2溶液中电化学腐蚀行为的影响。结果表明:Cl-破坏了锈层结构,诱导点蚀发生,纯Zn的腐蚀速率随着Cl-浓度的升高而增大。纯Zn在强碱性溶液中处于钝态,其耐蚀性能随着pH值的升高而增大。

关键词 纯Zn腐蚀行为Cl-pH值    
Abstract

The effect of Cl- concentration and pH values on the electrochemical corrosion behavior of Zn in saturated Zn(OH)2 solutions, which aims to simulate the initial atmospheric corrosion environment, was studied by means of polarization curves, electrochemical impedance spectroscopy and scanning electron microscopy (SEM). The results indicated that the corrosion rate of Zn increased with the increase of Cl- concentration, Cl- destroyed the rust layer on the electrode, while induced pitting corrosion. Zn was in passive state at high alkaline solution, the corrosion resistance of Zn increased with the increase of pH value.

Key wordspure zinc    corrosion behavior    Cl-    pH value
    
基金资助:国家自然科学基金项目 (41506098),中国博士后基金和第九批特等资助项目(2015M580528和2016T90553),浙江省博士后科研项目择优资助项目 (BSH1502160) 和宁波市自然科学基金项目 (2016A610261)资助

引用本文:

刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
Shuan LIU, Kaihe ZHOU, Yunhui FANG, Xiaozhong XU, Jiong JIANG, Xiaoping GUO, Wenru ZHEN, Jibin PU, Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 522-528.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.160      或      https://www.jcscp.org/CN/Y2016/V36/I6/522

图1  纯Zn在不同pH值饱和Zn(OH)2溶液中的Tafel极化曲线
pH Ecorr (vs SCE)V IcorrμAcm-2 bcmVdec-1 bamVdec-1
8.4 -1.003 9.76 -586.3 47.8
10.0 -1.001 2.41 -598.6 33.3
11.0 -0.992 1.22 -742.5 27.9
13.0 -0.991 0.97 -729.1 46.3
表1  纯Zn在不同pH值饱和Zn(OH)2溶液中的拟合参数
图2  纯Zn在不同pH值饱和Zn(OH)2溶液中的线性极化曲线以及Rp变化曲线
图3  纯Zn在pH值为8.4和13.0的饱和Zn(OH)2溶液中的循环极化曲线
图4  纯Zn在pH值分别为8.4和13.0的饱和Zn(OH)2溶液中浸泡40 d后的SEM像
图5  纯Zn在不同Cl-浓度饱和Zn(OH)2溶液中浸泡不同时间后的Nyquist和Bode图
图6  纯Zn在不同Cl-浓度饱和Zn(OH)2溶液中的等效电路图
CCl-mol/L Ecorr (vs SCE)V IcorrμAcm-2 βamVdec-1 βcmVdec-1
0 -1.117 1.28 125.1 -193.2
0.2 -1.126 16.5 97.1 -152.3
0.4 -1.127 27.5 98.7 -109.8
0.6 -1.147 28.7 100.7 -89.37
1.0 -1.175 31.5 104.2 -91.2
表2  纯Zn在不同Cl-浓度饱和Zn(OH)2溶液中浸泡14 d后的腐蚀参数
图7  纯Zn的Rf和1/Rct在不同Cl-浓度饱和Zn(OH)2溶液中浸泡不同时间后的变化曲线
图8  纯Zn在不同Cl-浓度饱和Zn(OH)2溶液中浸泡14 d后的极化曲线
[1] Hidekazu T, Nozomi M, Tatsuo I, et al.Simulating study of atmospheric corrosion of Zn-Ni alloy coating on steels in marine zone: Structure and properties of artificially synthesized Ni(II)-doped zinchydroxychloride rust particles[J]. Adv. Powder Technol., 2015, 26(2): 612
[2] Tomas P, Andrej N, Anne L G, et al.Coil-coated Zn-Mg and Zn-Al-Mg: Effect of climatic parameters on the corrosion at cut edges[J]. Prog. Org. Coat., 2015, 83: 26
[3] Hidekazu T, Sei H, Tatsuo I, et al.Influence of Fe(II) and Fe(III) on the formation, structure and molecular adsorption properties of zinc hydroxysulfate rusts[J]. Corros. Sci., 2012, 60: 284
[4] Liu S, Sun H Y, Zhang N, et al.The corrosion performance of galvanized steel in closed rusty seawater[J]. Int. J. Corros., 2013, (2013): 1
[5] Ddn S, Shyamjeet Y.Role of tannic acid based rust converter on formation of passive film on zinc rich coating exposed in simulated concrete pore solution[J]. Surf. Coat. Technol., 2008, 202(8): 1526
[6] Xing Y Y, Liu Z Y, Du C W, et al.Influence of H2S concentration and pH value on corrosion behavior of weld joint of X65 subsea pipeline steel[J]. J. Chin. Soc. Corros. Prot., 2014, 34(3): 231
[6] (邢云颖, 刘智勇, 杜翠薇等. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231)
[7] Li Y.Formation of nano-crystalline corrosion products on Zn-Al alloy coating exposed to seawater[J]. Corros. Sci., 2001, 43(9): 1973
[8] Chen Y Y, Chung S C, Shih H C.Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[9] Keddam M, Hugotlegoff A, Takenouti H, et al.The influence of a thin electrolyte layer on the corrosion process of zinc in chloride containing solutions[J]. Corros. Sci., 1992, 33(8): 124
[10] Cole I S, Muster T H, Lau D, et al.Products formed during the interaction of seawater droplets with zinc surfaces: 1.results from short exposures[J]. J. Electrochem. Soc., 2010, 155(5): 213
[11] Aal E E A. Effect of Cl- anions on zinc passivity in berate solution[J]. Corros. Sci., 2000, 42(1): 1
[12] Qu Q, Yan C W, Wan Y, et al.Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corros. Sci., 2002, 44(12):2789
[13] Wang S M.A study of corrosion between atmospheric exposure and laboratory-accelerated corrosion test of Zinc and Zinc coatings[D]. Wuhan: Wuhan Research Institute of Materials Protection, 2001
[13] (王绍明. Zn及Zn覆盖层户外大气暴露与实验室加速腐蚀试验相关性的研究 [D]. 武汉: 武汉材料保护研究所, 2001)
[14] Liu S, Sun H Y, Sun L J.Effects of the pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rusty layer solution[J]. J. Funct. Mater., 2013, 44(6): 858
[14] (刘栓, 孙虎元, 孙立娟. pH值和温度对镀Zn钢在模拟锈层溶液中电化学腐蚀行为的影响[J]. 功能材料, 2013, 44(6): 858)
[15] Liu S, Zhao X, Hou B R, et al.Corrosion behavior of pipeline steel X65 in oilfield[J]. J. Chin. Soc. Corros. Prot., 2015, 35(5): 393
[15] (刘栓, 赵霞, 侯保荣等. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393)
[16] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50(7): 1841
[17] Liu S, Sun H Y, Sun L J, et al.Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corros. Sci., 2012, 65: 520
[18] Liu S, Zhao X R, Sun H Y, et al.The degradation of tetracycline in a photoelectro-fenton system[J]. Chem. Eng. J., 2013, 231: 441
[19] Sun H Y, Liu S, Sun L J.A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5wt%NaCl[J]. Int. J. Electrochem. Sci., 2013, 8: 3494
[20] Xu X Q, Miao J, Bai Z Q, et al.The corrosion behavior of electroless Ni-P coating in Cl-/H2S environment[J]. Appl. Surf. Sci., 2012, 258(22): 8802
[21] Pampliega A A, Taryba M G, Bergh K V, et al.Study of local Na+ and Cl- distributions during the cut-edge corrosion of aluminum rich metal-coated steel by scanning vibrating electrode and micro-potentiometric techniques[J]. Electrochim. Acta, 2013, 102: 319
[22] Hideki K, Seiji K.Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn-Al coatings exposed in a coastal area[J]. Corros. Sci., 2013, 76: 35
[23] Andrea B, Alessandro F, Vincenzo G, et al.Corrosion inhibition by anionic surfactants of AA2198 Li-containing aluminium alloy in chloride solutions[J]. Corros. Sci., 2013, 73: 80
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 邓培昌, 钟杰, 王坤, 胡杰珍, 李子运, 岑楚欣, 沈小涵. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[9] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[12] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[15] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.