Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 367-374    DOI: 10.11902/1005.4537.2019.136
  综合评述 本期目录 | 过刊浏览 |
微型电化学传感器在界面微区pH值监测中的应用
朱泽洁1,2,张勤号1,刘盼1,张鉴清1,曹发和1,3()
1. 浙江大学化学系 杭州 310027
2. 中国计量大学材料与化学学院 杭州 310018
3. 中山大学材料学院 广州 510006
Application of Microelectrochemical Sensors in Monitoring of Localized Interface pH
ZHU Zejie1,2,ZHANG Qinhao1,LIU Pan1,ZHANG Jianqing1,CAO Fahe1,3()
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
2. School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
3. School of Materials, Sun Yat-sen University, Guangzhou 510006, China
全文: PDF(4025 KB)   HTML
摘要: 

微型pH电化学传感器被广泛应用于界面局部pH值在线监测。本文简要介绍了近年来pH电化学传感器的研究进展,重点阐述了如何结合不同微区扫描探针技术的电位响应模式,应用于界面微区pH值分布的监测,并简要介绍了本课题组在界面微区pH电化学传感器方面的研究工作,展望其在腐蚀界面微区领域的应用前景。

关键词 微型电化学传感器pH值界面腐蚀扫描微探针技术    
Abstract

Microelectrochemical sensor has been widely applied in various fields involving redox reactions, including experimental research and industrial applications. This paper briefly introduces the recent advances of microelectrochemical pH sensor. The microelectrochemical pH sensor associated with potentiometric mode of different scanning probe microscope is also described for monitoring the local pH distribution of interfaces. Research work of microelectrochemical pH sensor in the measurement of micro-area pH at interfaces by our group is also introduced. Future applications of microelectrochemical pH sensor in corrosion are highlighted.

Key wordsmicroelectrochemical sensor    pH    interface    corrosion    scanning probe technology
收稿日期: 2019-08-29     
ZTFLH:  O646  
基金资助:国家自然科学基金(51771174);浙江省自然科学基金杰出青年项目(LR16E010001);国家自然环境腐蚀平台项目
通讯作者: 曹发和     E-mail: caofh5@mail.sysu.edu.cn
Corresponding author: Fahe CAO     E-mail: caofh5@mail.sysu.edu.cn
作者简介: 朱泽洁,女,1990年生,博士

引用本文:

朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
Zejie ZHU, Qinhao ZHANG, Pan LIU, Jianqing ZHANG, Fahe CAO. Application of Microelectrochemical Sensors in Monitoring of Localized Interface pH. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 367-374.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.136      或      https://www.jcscp.org/CN/Y2019/V39/I5/367

图1  在1 mmol/L NaCl溶液中浸泡不同时间的镀锌层/钢板切片pH线扫描图及浸泡5 h后的面扫描图[33]
图2  负载溶胶-凝胶薄膜的AZ31B镁基合金在0.05 mol/L NaCl溶液中浸泡后的H+活性图[35]
图3  316L不锈钢置于1 mol/L NaCl溶液 (pH值为2.00) 中浸泡不同时间后的SECM面扫描图[40]
图4  316L不锈钢置于含6%FeCl3的酸性溶液时,通过次微米Pt/IrOx-pH传感器电极测得的不同探针-基底距离下pH值随时间的演化图
Imersiontime / hGap / μm

?c?x(x=0)

mol?L-1?μm-1

IA?cm-2
135
40.001270.001440.001691.05×10-47.90×10-3
66.38×10-47.05×10-47.8×10-43.55×10-52.67×10-3
83.09×10-43.46×10-43.91×10-42.05×10-51.54×10-3
101.95×10-42.00×10-42.08×10-43.25×10-62.45×10-4
表1  浸泡不同时间后不同高度处质子的浓度 (mol?L-1)
图5  距离不锈钢基底表面不同距离处的pH值分布测试示意图及不同探针-基底距离下pH值随时间的演化图[41]
图6  316L不锈钢在含6% FeCl3的酸性溶液中的电流和pH值面扫描图[42]
1 KasikI, MrazekJ, MartanT, et al. Fiber-optic pH detection in small volumes of biosamples [J]. Anal. Bioanal. Chem., 2010, 398: 1883
2 Beltrán-PérezG, López-HuertaF, Mu?oz-AguirreS, et al. Fabrication and characterization of an optical fiber pH sensor using sol-gel deposited TiO2 film doped with organic dyes [J]. Sens. Actuator, 2006, 120B: 74
3 TakeshitaY, MartzT R, JohnsonK S, et al. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater [J]. Anal. Chem., 2014, 86: 11189
4 KoflerJ, SchmoltnerK, KlugA, et al. Hydrogen ion-selective electrolyte-gated organic field-effect transistor for pH sensing [J]. Appl. Phys. Lett., 2014, 104: 193305
5 TanumihardjaE, OlthuisW, van den BergA. Ruthenium oxide nanorods as potentiometric pH sensor for organs-on-chip purposes [J]. Sensors, 2018, 18: 2901
6 LiaoY H, ChouJ C. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method [J]. Mater. Chem. Phys., 2009, 114: 542
7 KuoL M, ChenK N, ChuangY L, et al. A flexible pH-sensing structure using WO3/IrO2 junction with Al2O3 encapsulation layer [J]. ECS Solid State Lett., 2012, 2(3): P28
8 YuJ J, KhalilM, LiuN, et al. Iridium oxide-based chemical sensor for in situ pH measurement of oilfield-produced water under subsurface conditions [J]. Ionics, 2015, 21: 855
9 GlennS J, CullumB M, CarterJ C, et al. Development of a lifetime-based fiber optic imaging sensor to study water transport in thin nafion membranes[A]. Conference on Chemical, Biochemical, and Environmental Fiber Sensors X [C]. Boston, 1998: 235
10 XuF, YanG Z, WangZ W, et al. Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule [J]. Measurement, 2015, 64: 49
11 LeeD, CuiT H. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing [J]. Biosens. Bioelectron., 2010, 25: 2259
12 RaiP, JungS, JiT, et al. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: Towards detection of myocardial ischemia [A]. Conference on Nanosensors and Microsensors for Bio-Systems [C]. San Diego, 2008: 69310
13 KimJ H, FujitaS, ShiratoriS. Fabrication and Characterization of TiO2 Thin film prepared by a layer-by-layer self-assembly method [J]. Thin Solid Films, 2006, 499: 83
14 ShervedaniR K, MehrdjardiH R Z, GhahfarokhiS H K. Electrochemical characterization and application of Ni-RuO2 as a pH sensor for determination of petroleum oil acid number [J]. J. Iran. Chem. Soc., 2007, 4: 221
15 MihellJ A, AtkinsonJ K. Planar thick-film pH electrodes based on ruthenium dioxide hydrate [J]. Sens. Actuator, 1998, 48B: 505
16 MauryaD K, SardarinejadA, AlamehK. High-sensitivity pH sensor employing a sub-micron ruthenium oxide thin-film in conjunction with a thick reference electrode [J]. Sens. Actuator, 2013, 203A: 300
17 HuangF F, JinY, WenL. Investigations of the hydration effects on cyclic thermo-oxidized Ir/IrOx electrode [J]. J. Electrochem. Soc., 2015, 162: B337
18 KakooeiS, IsmailM C, WahjoediB A. Electrochemical study of iridium oxide coating on stainless steel substrate [J]. Int. J. Electrochem. Sci., 2013, 8: 3290
19 ChenD C, ZhenJ S, FuC Y. Preparation of Ir/IrOx pH electrode based on melt-oxidation and its response mechanism investigation [J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 1459
20 LaleA, TsopelaA, CivélasA, et al. Integration of tungsten layers for the mass fabrication of WO3-based pH-sensitive potentiometric microsensors [J]. Sens. Actuator, 2015, 206B: 152
21 HaY, WangM. Capillary melt method for micro antimony oxide pH electrode [J]. Electroanalysis, 2006, 18: 1121
22 SvobodováE, BaldrianováL, Ho?evarS B, et al. Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode [J]. Int. J. Electrochem. Sci., 2012, 7: 197
23 HaY J, MyungD, ShimJ H, et al. A dual electrochemical microsensor for simultaneous imaging of oxygen and pH over the rat kidney surface [J]. Analyst, 2013, 138: 5258
24 LuY, WangT Y, CaiZ H, et al. Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording [J]. Sens. Actuator, 2009, 137B: 334
25 DuR G, HuR G, HuangR S, et al. In situ measurement of Cl- concentrations and pH at the reinforcing steel/concrete interface by combination sensors [J]. Anal. Chem., 2006, 78: 3179
26 HaY J, MyungD, ShimJ H, et al. A dual electrochemical microsensor for simultaneous imaging of oxygen and pH over the rat kidney surface [J]. Analyst, 2013, 138: 5258
27 IzquierdoJ, SantanaJ J, GonzálezS, et al. Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals: The protection of copper surfaces by benzotriazole [J]. Electrochim. Acta, 2010, 55: 8791
28 González-GarcíaY, SantanaJ J, González-GuzmánJ, et al. Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals [J]. Prog. Org. Coat., 2010, 69: 110
29 IzquierdoJ, NagyL, VargaA, et al. Spatially resolved measurement of electrochemical activity and pH distributions in corrosion processes by scanning electrochemical microscopy using antimony microelectrode tips [J]. Electrochim. Acta, 2011, 56: 8846
30 IzquierdoJ, KissA, SantanaJ J, et al. Development of Mg2+ ion-selective microelectrodes for potentiometric scanning electrochemical microscopy monitoring of galvanic corrosion processes [J]. J. Electrochem. Soc., 2013, 160: C451
31 IzquierdoJ, EifertA, KranzC, et al. In situ monitoring of pit nucleation and growth at an iron passive oxide layer by using combined atomic force and scanning electrochemical microscopy [J]. ChemElectroChem, 2015, 2: 1847
32 IzquierdoJ, Martín-RuízL, Fernández-PérezB M, et al. Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution [J]. J. Electroanal. Chem., 2014, 728: 148
33 Fernández-PérezB M, IzquierdoJ, GonzálezS, et al. Scanning electrochemical microscopy studies for the characterization of localized corrosion reactions at cut edges of coil-coated steel [J]. J. Solid State Electrochem., 2014, 18: 2983
34 KaravaiO V, BastosA C, ZheludkevichM L, et al. Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy [J]. Electrochim. Acta, 2010, 55: 5401
35 LamakaS V, KaravaiO V, BastosA C, et al. Monitoring local spatial distribution of Mg2+, pH and ionic currents [J]. Electrochem. Commun., 2008, 10: 259
36 TarybaM, LamakaS V, SnihirovaD, et al. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on “smart” coatings applied to galvanized steel [J]. Electrochim. Acta, 2011, 56: 4475
37 PageA, KangM, ArmitsteadA, et al. Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy-scanning electrochemical microscopy [J]. Anal. Chem., 2017, 89: 3021
38 MorrisC A, ChenC C, ItoT, et al. Local pH measurement with scanning ion conductance microscopy [J]. J. Electrochem. Soc., 2013, 160: H430
39 MorrisC A, ChenC C, BakerL A. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM) [J]. Analyst, 2012, 137: 2933
40 ZhuZ J, LiuX Y, YeZ N, et al. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential [J]. Sens. Actuator B-Chem., 2018, 255: 1974
41 ZhuZ J, YeZ N, ZhangQ H, et al. Novel dual Pt-Pt/IrOx ultramicroelectrode for pH imaging using SECM in both potentiometric and amperometric modes [J]. Electrochem. Commun., 2018, 88: 47
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.