Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 375-381    DOI: 10.11902/1005.4537.2016.065
  研究报告 本期目录 | 过刊浏览 |
乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究
蒋秀1(), 宋晓良1, 张全2, 刘艳1, 刘曦泽1, 屈定荣1
1 中国石油化工股份有限公司青岛安全工程研究院 青岛 266071
2 中国海洋大学化学化工学院 青岛 266100
Effect of Ethylene Glycol on Corrosion Behavior of X65 Mild Steel in CO2-saturated 3.5%NaCl Solution
Xiu JIANG1(), Xiaoliang SONG1, Quan ZHANG2, Yan LIU1, Xize LIU1, Dingrong QU1
1 SINOPEC Research Institute of Safety Engineering, Qingdao 266071, China
2 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(5120 KB)   HTML
摘要: 

采用接触角、pH值和粘度测量等方法研究了40% (质量分数) 乙二醇对CO2饱和的3.5% (质量分数) NaCl溶液及其凝结液性质的影响,采用失重、电化学和扫描电镜等方法研究了40%乙二醇对X65钢管道顶部气相和管道底部液相腐蚀行为的影响。结果表明:在常压、35 ℃条件下,40%乙二醇增加了CO2饱和的3.5%NaCl溶液及凝结液与X65钢表面的接触角、pH值及粘度;在3.5%NaCl溶液和3.5%NaCl+40%乙二醇溶液中,管道顶部的凝结液pH值均明显低于管道底部溶液;40%乙二醇加速了液相腐蚀产物膜的形成,降低了X65钢管道底部的均匀腐蚀速率,促进了管道底部发生小孔腐蚀;乙二醇对X65钢管道顶部的均匀腐蚀速率未造成明显影响,但加速了小孔腐蚀的发生。

关键词 乙二醇凝结液CO2顶部底部腐蚀    
Abstract

The effect of 40% (mass fraction) ethylene glycol on the performance of CO2 saturated 3.5% (mass fraction) NaCl solution and relevant condensates was assessed by measurements of contact angle, pH and viscosity. Effect of 40% ethylene glycol on both top of line corrosion and bottom of line corrosion for X65 mild steel pipeline was investigated by means of weight loss, electrochemical method and scanning electron microscopy (SEM). Results indicated that contact angle, pH and viscosity of 3.5%NaCl solution saturated by CO2 and relevant condensates were increased due to the incorporation of 40% ethylene glycol at 35 ℃ and 1 atm. In the presence of solution of 3.5%NaCl or 3.5%NaCl+40% ethylene glycol, the pH value of the condensates formed on the top of line was lower than that on the bottom of pipeline. Due to the addition of 40% ethylene glycol to 3.5%NaCl solution, the deposition of corrosion products and pitting corrosion were accelerated, while the general corrosion rate of the bottom of pipeline was decreased. In fact, the general corrosion rate of the top of line for X65 mild steel pipeline was not obviously affected by 40% ethylene glycol, but the pitting corrosion was speeded up.

Key wordsethylene glycol    condensate    CO2    top of line    bottom of line    corrosion
收稿日期: 2016-05-20     
ZTFLH:  TE988.2  
作者简介:

作者简介 蒋秀,女,1976年生,博士,高级工程师

引用本文:

蒋秀, 宋晓良, 张全, 刘艳, 刘曦泽, 屈定荣. 乙二醇对X65钢在CO2饱和的3.5%NaCl溶液中腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 375-381.
Xiu JIANG, Xiaoliang SONG, Quan ZHANG, Yan LIU, Xize LIU, Dingrong QU. Effect of Ethylene Glycol on Corrosion Behavior of X65 Mild Steel in CO2-saturated 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 375-381.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.065      或      https://www.jcscp.org/CN/Y2017/V37/I4/375

图1  测试系统结构示意图
图2  在35 ℃下3.5%NaCl和3.5%NaCl+40%乙二醇溶液的气相中暴露试样表面液滴的凝结
表1  3.5%NaCl溶液和3.5%NaCl+40%乙二醇溶液及其凝结液的pH值、粘度及与金属表面的接触角
Solution Contact angledeg pH Viscosity mPas
3.5%NaCl 38.8 3.8 0.83
Condensate of 3.5%NaCl solution 43 3.6 0.77
3.5%NaCl+40% ethylene glycol solution 60.1 5.09 2.25
Condensate of 3.5%NaCl+40% ethylene glycol solution 64.7 3.91 0.95
  
图3  X65钢在35 ℃下3.5%NaCl溶液和3.5%NaCl+40%乙二醇溶液中的腐蚀速率随时间的变化
图4  X65钢在35 ℃下含不同浓度乙二醇的3.5%NaCl溶液气相和液相中的腐蚀速率
图5  X65钢在35 ℃下含不同浓度乙二醇的3.5%NaCl溶液气相中腐蚀24 h后的腐蚀形貌
图6  X65钢在35 ℃下含不同浓度的乙二醇的3.5%NaCl溶液液相中腐蚀24 h后的腐蚀形貌
Mass fraction of ethylene glycol / % Water content% Impact factorF
0 100 1.00
10 90 0.84
30 70 0.57
40 60 0.44
50 50 0.33
70 30 0.15
90 10 0.03
表2  乙二醇影响因子随质量浓度的变化
[1] Paillassa R, Dieumegard M, Estavoyer M M.Corrosion control in the gathering system at LACQ sour gas field [A]. NACE/1981[C]. Houston, TX: NACE, 1981: 860
[2] Estavoyer M M.Corrosion problem at LACQ sour gas field [A]. NACE/1981[C]. Houston, TX: NACE, 1981: 905
[3] Ho-Chung-Qui D F, Williamson A I. Corrosion experiences and inhibition practices in wet sour gathering systems [A]. NACE/1987[C]. Houston, TX: NACE, 1987: 87046
[4] Edwards M A, Cramer B.Top of line corrosion-diagnosis, root cause analysis, and treatment [A]. NACE/2000[C]. Houston, TX: NACE, 2000: 00072
[5] Jiang X, Qu D R, Liu X H.Research development of top of line corrosion (TLC) in wet natural gas pipelines[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 86(蒋秀, 屈定荣, 刘小辉. 湿气管线的顶部腐蚀研究概况[J]. 中国腐蚀与防护学报, 2011, 31: 86)
[6] Senningsen G, Nyborg R, Dugstad A.Modeling of top of line corrosion with organic acid and glycol [A]. NACE/2014[C]. Houston, TX: NACE, 2014: 144057
[7] Kvarekval J, Dugstad A, Seiersten M.Localized corrosion on carbon steel in sour glycolic solutions [A]. NACE/2010[C]. San Antonio, Texas: NACE, 2010: 10277
[8] Kvarekval J, Dugstad A.Pitting corrosion mechanisms on carbon steel in sour glycol/water mixtures [A]. NACE/2004[C]. New Orleans, Louisiana: NACE, 2004: 04737
[9] Yaakob N, Singer M, Young D.Elemental sulfur corrosion of carbon steel in the presence of sulfur solvent and monoethylene glycol [A]. NACE/2015[C]. Dallas, Texas: NACE, 2015: 155930
[10] Alharooni K, Barifcani A, Pack D, et al.Inhibition effects of thermallly degraded MEG on hydrate formation for gas systems[J]. J. Petr. Sci. Eng., 2015, 135: 608
[11] Jiang X, Qu D R, Liu X H.Corrosion simulation devices for the volatile material containing environment [P]. Chin Pat, 203572 756U, 2014(蒋秀, 屈定荣, 刘小辉. 含挥发性物质环境的腐蚀模拟装置 [P]. 中国专利, 203572756U, 2014)
[12] Gulbrandsen E, Morard J-H.Why does glycol inhibit CO2 corrosion [A]. NACE/1998[C]. San Diego, California: NACE, 1998: 98221
[13] Smith L, DeWarrd K. Corrosion prediction and materials selection for oil and gas producing environments [A]. NACE/2005[C]. Houston, TX: NACE, 2005: 05648
[14] Hu L H, Chang W, Lu M X, et al.Inhibition effect of monoethylene glycol on CO2 corrosion of carbon steel subsea pipeline[J]. Corros. Prot., 2012, 33: 463(胡丽华, 常炜, 路民旭等. 乙二醇对海底管道CO2腐蚀的抑制作用[J]. 腐蚀与防护, 2012, 33: 463)
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[4] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[5] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[6] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[7] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[8] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[9] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[10] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.