Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 566-572    DOI: 10.11902/1005.4537.2016.145
  研究报告 本期目录 | 过刊浏览 |
六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究
崔明君1,2,任思明2,3,张广安1,刘栓3,赵海超3,王立平3,薛群基1,3()
1. 中国科学院兰州化学物理研究所 固体润滑国家重点实验室 兰州 730000
2. 中国科学院大学 北京 100039
3. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室浙江省海洋材料与防护技术重点实验室 宁波 315201
Corrosion Performance of Hexagonal Boron Nitride Doped Waterborne Epoxy Coating
Mingjun CUI1,2,Siming REN2,3,Guang'an ZHANG1,Shuan LIU3,Haichao ZHAO3,Liping WANG3,Qunji XUE1,3()
1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
2. University of Chinese Academy of Sciences, Beijing 100039, China
3. Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(1017 KB)   HTML
摘要: 

通过超声分散方法将六方氮化硼 (h-BN) 纳米片均匀分散于水中,同时利用高速搅拌将超声分散均匀的h-BN分散液与双组分水性环氧树脂搅拌均匀,并涂于电极表面,固化成膜。采用透射电子显微镜 (TEM)、扫描探针显微镜 (SPM) 和扫描电镜 (SEM) 考察h-BN在水溶液和水性环氧树脂中的分散情况。通过电化学阻抗谱、开路电位和极化曲线测试研究了掺杂不同含量h-BN对水性环氧树脂在3.5%(质量分数)NaCl溶液中的耐蚀性。结果表明:h-BN在水溶液中大约以相对较薄的多层存在,这将有利于其形成致密的物理隔绝层,延缓了腐蚀介质在环氧涂层中的扩散,改善其对基底的防护性能。其中,相对于纯水性环氧树脂涂层来说,掺杂2%h-BN的复合涂层表现出极高的阻抗模值和极低的腐蚀电流密度,对基底具有最优的防护性能。

关键词 水性环氧树脂六方氮化硼电化学测试耐腐蚀性    
Abstract

Hexagonal boron nitride doped waterborne epoxy coating was prepared by incorporating the water dispersed h-BN into the waterborne epoxy resin with a high speed stirring. The dispersity of h-BN in water was characterized by transmission electron microscopy, scanning probe microscopy and scanning electron microscopy. The anticorrosion performance of the waterborne epoxy coating doped with different among of h-BN was investigated by means of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and potentiodynamic polarization measurement. The results indicated that h-BN existed within relative thin multilayer in the water, which was beneficial to the formation of dense physical barrier composited of h-BN, thus slowing down the diffusion rate of corrosive medium in the coating and improving their anticorrosion performance. Meanwhile, in comparison with the pure epoxy coating, the epoxy coating with 2%h-BN exhibited extremely high impedance modulus and low corrosion current density, indicating its excellent corrosion performance.

Key wordswaterborne epoxy resin    hexagonal boron nitride    electrochemical measurement    anticorrosion performance
    

引用本文:

崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
Mingjun CUI, Siming REN, Guang'an ZHANG, Shuan LIU, Haichao ZHAO, Liping WANG, Qunji XUE. Corrosion Performance of Hexagonal Boron Nitride Doped Waterborne Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 566-572.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.145      或      https://www.jcscp.org/CN/Y2016/V36/I6/566

图1  h-BN在水溶液中超声分散后的TEM和SPM像
图2  BN-EP复合涂层的断面及表面形貌
图3  h-BN、水性环氧树脂涂层和BN-EP复合涂层的XRD谱
图4  4种掺杂不同h-BN/EP涂层的接触角
图5  EP, 0.5%BN-EP, 1.0%BN-EP和2.0%BN-EP涂层在3.5%NaCl溶液中浸泡不同时间的EIS谱图
图6  等效电路图
图7  h-BN/环氧树脂涂层在3.5%NaCl溶液中浸泡不同时间的Rcoat
图8  EP, 0.5%BN-EP, 1.0%BN-EP和2.0%BN-EP涂层的开路电位随浸泡时间的变化曲线
Sample Ecorr / V Icorr / Acm-2
Pure EP -0.69 1.3×10-7
0.5%BN-EP -0.65 2.5×10-7
1.0%BN-EP -0.61 4.0×10-8
2.0%BN-EP -0.51 2.0×10-9
表1  h-BN环氧树脂涂层在3.5%NaCl溶液中浸泡20 d后的电化学腐蚀参数
图9  EP, 0.5%BN-EP, 1.0%BN-EP和2.0%BN-EP涂层在3.5%NaCl溶液中浸泡20 d后的动电位极化曲线
[1] Ghasemi-Kahrizsangi A, Shariatpanahi H, Neshati J, et al.Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure[J]. Appl. Surf. Sci., 2015, 353: 530
[2] Liu D, Zhao W J, Liu S, et al.Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J]. Surf. Coat.Technol., 2015, 286: 354
[3] Wang X, Zhou S, Xing W Y, et al.Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites[J]. J. Mater. Chem., 2013, 1A: 4383
[4] Ramezanzadeh B, Ghasemi E, Mahdavian M, et al.Covalentlygraft-ed graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings,[J]. Carbon, 2015, 93: 555
[5] Husain E, Narayanan T N, Taha-Tijerina J J, et al. Marine corrosion protective coatings of hexagonal boron nitride thin films on stainless steel[J]. ACS Appl. Mater. Interface., 2013, 5(10): 4129
[6] Pakdel A, Zhi C, Bandoa Y, et al.Low-dimensional boron nitride na-nomaterials[J]. Mater. Today, 2012, 15(6): 256
[7] Zhi C, Bando Y, Tang C C, et al.Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties[J]. Adv. Mater., 2009, 21(28): 2889
[8] Shen H, Guo J, Wang H, et al.Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Appl. Mater. Interface., 2015, 7(10): 5701
[9] Teng C C, Ma C C M, Chiou K C, et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites[J]. Mater. Chem. Phys., 2011, 126(3): 722
[10] Yu J H, Huang X Y, Wu C, et al.Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J]. Polymer, 2012, 53(2): 471
[11] Yi M, Shen Z G, Zhao X H, et al.Boron nitride nanosheets as oxygen-atom corrosion protective coatings[J]. Appl. Phys. Lett., 2014, 104(14): 143101
[12] Dikici B, Ozdemir I.FeB and FeB/h-BN based anti-corrosive composite coatings for aluminium alloys[J]. Anti-Corros. Method. Mater., 2012, 59(5): 246
[13] Shen L, Zhao Y D, Wang Y, et al. A long-term corrosion barrier with an insulating boron nitride monolayer [J]. J. Mater. Chem., 2016, 4(14)A: 5044
[14] Kumari S, Sharma O P, Gusain R.Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction[J]. ACS Appl. Mater. Interface., 2015, 7: 3708
[15] Wu H C, Kessler M R.Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization[J]. ACS Appl. Mater. Interface., 2015, 7: 5915
[16] Zhu W, Nie C Y, Ran C H, et al. Study on electrochemical corrosion behavior comparison between DLC and TiN coatings under different corrosive environment [J]. Adv. Mater. Res., 2013, 750-752: 1977
[17] Cui M J, Pu J B, Zhang G A, et al.The corrosion behaviors of multilayer diamond-like carbon coatings: influence of deposition periods and corrosive medium[J]. RSC Adv., 2016, 6: 28570
[18] Meng F D, Liu L, Tian W L, et al.The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure[J]. Corros. Sci., 2015, 101: 139
[19] Zhang D W, Qian H C, Wang L T, et al.Comparison of barrier properties for a superhydrophobic epoxy coating under different si-mulated corrosion environments[J]. Corros. Sci., 2016, 103: 230
[20] Wang Y Q, Liu S, Liu Z P, et al.Water isolation and protective performance of waterborne graphene-doped epoxy coating[J]. Electroplat. Finish., 2015, 34: 314
[20] (王玉琼, 刘栓, 刘兆平等. 石墨烯掺杂水性环氧树脂的隔水和防护性能[J]. 电镀与涂饰, 2015, 34: 314)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[5] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[6] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[7] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[8] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[9] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[10] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[12] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[13] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[14] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[15] 张丹丹,王振尧,赵春英,曹公望. Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 326-332.