Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (6): 559-565    DOI: 10.11902/1005.4537.2016.124
  研究报告 本期目录 | 过刊浏览 |
水性无铬达克罗涂料的制备与性能研究
李庆鹏1,2(),许茜1,刘建国2,严川伟2,张亮3,殷跃军3,韩长智3
1. 东北大学材料与冶金学院 沈阳 110142
2. 中国科学院金属研究所 金属腐蚀与防护实验室 沈阳 110016
3. 沈阳市航达科技有限责任公司 沈阳 110043
Preparation and Performance of Water-based Chromium-free Dacromet Coating
Qingpeng LI1,2(),Qian XU1,Jianguo LIU2,Chuanwei YAN2,Liang ZHANG3,Yuejun YIN3,Changzhi HAN3
1. School of Material and Metallurgy, Northeastern University, Shenyang 110142, China
2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Shenyang Hangda Technology Co., Ltd, Shenyang 110043, China
全文: PDF(909 KB)   HTML
摘要: 

采用片状锌粉和铝粉为填料,硅烷A-187为成膜物,制备了一种水性无铬达克罗涂料,通过扫描电子显微镜 (SEM)、能谱 (EDS)、X射线光电子能谱 (XPS)、中性盐雾实验、动电位极化曲线和电化学阻抗谱对涂层的表面形貌、成分及耐蚀性能进行了表征和分析。结果表明:制备的水性无铬达克罗涂料具有优异的储存稳定性,50 ℃/48 h涂料无变化;涂装后的无铬水性涂层表面均匀平整,无明显缺陷,经480 h中性盐雾实验,表面无红锈产生;水性无铬达克罗涂层腐蚀电位负移,腐蚀电流减小了两个数量级,腐蚀电阻增加,涂层具有较好的防护性能。

关键词 锌粉铝粉稳定性水性无铬达克罗涂料    
Abstract

A water-based chromium-free Dacromet coating was prepared with powders of Zn and Al as filler and silane A-187 as film forming material. The coatings were characterized by means of SEM with EDS and XRD, while their corrosion performance was investigated by using potentiodynamic measurement, NSS test and AC impedance spectra. The results showed that the water-based chromium-free Dacromet paint had excellent stability with no obvious change even after storage at 50 ℃ for 48 h; the surface of the applied coatings was smooth and compact without defects, while no tarnish spots could be observed after 480 h salt spray test. The Ecorr of the water-based chromium-free Dacromet coating shifts positively while its Icorr is two magnitudes lower in comparison to those of the bare substrate which indicated that the water-based chromium-free Dacromet coating had excellent corrosion resistance.

Key wordsZn powder    Al powder    stability    water-based chromium-free    Dacromet coating
    

引用本文:

李庆鹏,许茜,刘建国,严川伟,张亮,殷跃军,韩长智. 水性无铬达克罗涂料的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 559-565.
Qingpeng LI, Qian XU, Jianguo LIU, Chuanwei YAN, Liang ZHANG, Yuejun YIN, Changzhi HAN. Preparation and Performance of Water-based Chromium-free Dacromet Coating. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 559-565.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.124      或      https://www.jcscp.org/CN/Y2016/V36/I6/559

Time / h Viscosity / s State
0 70 Normal
1 70 Normal
5 68 Normal
10 73 Normal
24 72 Normal
36 73 Normal
48 71 Normal
60 80 Normal
72 85 Normal
96 95 Normal
120 120 Normal
表1  水性无铬达克罗涂料稳定性 (50 ℃)
图1  水性无铬达克罗涂层表面的SEM像
Content C O Al Si Fe Zn Mo
Atomic fraction / % 41.95 27.98 3.21 4.63 1.98 20.20 0.05
Mass fraction / % 19.35 17.19 3.32 4.99 4.26 50.70 0.19
表2  水性无铬达克罗涂层表面成分的EDS分析
图2  水性无铬达克罗涂层表面XPS分析结果
图3  水性无铬涂层处理样品480 h中性盐雾实验前后照片
图4  样品在5%NaCl溶液中的极化曲线
Material Ecorr / V Icorr / Acm-2 Rp / Ω
Substrate -0.72 1.91×10-4 1.11×102
Water-based chromium-free Dacromet coating -1.04 4.79×10-6 4.44×103
表3  钢基体及水性无铬涂层的极化曲线参数
图5  水性无铬达克罗涂层在5%NaCl溶液中0~336 h浸泡时期的典型Nyquist图
图6  水性无铬达克罗涂层在5%NaCl溶液中0~336 h浸泡时期的典型Bode图
Time / h R1Ωcm2 CPE1-TFcm-2 CPE1-P R2Ωcm2 CPE2-TFcm-2 CPE2-P R3Ωcm2 W1-R W1-T/Fcm-2 W1-P
0 6.31 1.53×10-6 0.67 101 7.24×10-5 0.41 23537 --- --- ---
2 5.75 4.27×10-5 0.48 3703 1.27×10-5 0.75 50439 --- --- ---
24 19.62 4.80×10-6 0.57 379 4.66×10-5 0.76 130470 --- --- ---
72 20.06 4.34×10-5 0.59 203 8.53×10-5 0.77 164630 --- --- ---
96 19.31 4.34×10-5 0.59 171 9.50×10-5 0.76 274590 --- --- ---
192 13.36 3.04×10-5 0.58 188 8.54×10-5 0.64 3011 2237.31 2.68 ×10-3 0.38
240 16.03 2.58×10-5 0.59 237 9.52×10-5 0.64 3123 31.51 1.80 ×10-4 0.35
336 14.40 1.56×10-5 0.64 362 1.25×10-4 0.62 2361 28.25 1.76 ×10-4 0.32
表4  水性无铬达克罗涂层浸泡不同时间的电化学阻抗拟合参数
图7  水性无铬达克罗涂层浸泡0~336 h的等效电路
[1] Song J W, Du M.Current status of non-chromium Zn-Al coating[J]. Corros. Prot., 2007, 28(8): 411
[1] (宋积文, 杜敏. 无铬锌铝涂层发展现状[J]. 腐蚀与防护, 2007, 28(8): 411)
[2] Wang D, Liu J G, Yin Y J, et al.Influence of additives on hydrogen evolution of Zn powders and stability of Cr-free dacromet paint[J].Corros. Sci. Prot. Technol., 2009, 21(4): 427
[2] (王典, 刘建国, 殷跃军等. 钛添加剂对无铬达克罗防护性能的影响[J]. 腐蚀科学与防护技术, 2009, 21(4): 427)
[3] Wang D, Liu J G, Yan C W, et al.Influence of additives on hydrogen evolution of Zn powders and stability of chromiun-free dacromet paint[J]. Corros. Sci. Prot. Technol., 2009, 21(2): 176
[3] (王典, 刘建国, 严川伟等. 不同添加剂对锌粉的析氢抑制及无铬达克罗稳定性的影响[J]. 腐蚀科学与防护技术, 2009, 21(2): 176)
[4] Li Q P, Ai R D, Liu J G, et al.Effect of different inhibitors on inhibition of hydrogen evolution for Zn/Al mixed powder and performance of Cr-free Dacromet[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 121
[4] (李庆鹏, 艾瑞东, 刘建国等. 不同钝化剂对锌铝混合粉的析氢抑制及无铬达克罗性能影响[J]. 腐蚀科学与防护技术, 2011, 23(2):121)
[5] Jiang Y, Miao Q, Ding X, et al.Behavior of hydrogen evolution and inhibitors for Al-Zn-Si alloy flakes[J]. J. Chin. Soc. Corros. Prot.,2013, 33(1): 61)
[5] (蒋育, 缪强, 丁祥等. 片状Al-Zn-Si合金粉的析氢行为与抑制剂研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 61)
[6] Shao H H, She Y N, Liu X L, et al.Preparation of chrome-free dacromet coating and evaluation of its corrosion resistance[J]. Mater. Prot., 2014, 47(11): 43
[6] (邵红红, 佘益楠, 刘雪丽等. 无铬达克罗涂层的制备及其耐蚀性能[J]. 材料保护, 2014, 47(11): 43)
[7] Zhu J M, Yao Z J, Jiang Q, et al.Microstructure and corrosion resistance of Cr-free nanocomposite Zn/Al coatings[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 425
[7] (朱俊谋, 姚正军, 蒋穹等. 无铬纳米锌铝涂层的微观组织及腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(5): 425)
[8] Hu H L, Li N, Cheng J N, et al.Corrosion behavior of chromium-free dacromet coating in seawater[J]. J. Alloy. Compd., 2009, 472(1/2): 219
[9] Liu J G, Gong G P, Yan C W.EIS study of corrosion behaviour of organic coating/dacromet composite systems[J]. Electrochim. Acta, 2005, 50: 3320
[10] Lu J, Liang Y, Tang S W, et al.Study on process and corrosion resistance of chrome-free dacromet coating[J]. Appl. Chem. Ind., 2011, 40(4): 612
[10] (鲁俊, 梁英, 汤尚文等. 无铬达克罗涂料工艺及耐蚀性能研究[J]. 应用化工, 2011, 40(4): 612)
[11] Guo Z C, Wang Y F, Wang N M.Corrosion resistance of various silanization pretreatment on aluminiun alloy surface[J]. J. Chin. Soc. Corros. Prot., 2007, 27(3): 172
[11] (郭增昌, 王云芳, 王汝敏. 铝合金表面不同硅烷化预处理的耐蚀性研究[J]. 中国腐蚀与防护学报, 2007, 27(3): 172)
[12] Moulder J F, Stickle W F, Sobol P E, et al.Handbook of X-ray Photo-electron Spectroscopy[M]. 2nd Ed. Eden Prairie: Physical Electronics Division, 1992
[13] Mansfeild F, Kendig M W, Tsai S.Recording and analysis of AC impedance data for corrosion studies II. Experimental approach and results[J]. Corrosion, 1982, 38(11): 570
[14] Liu J G, Gong G P, Yan C W.Electrochemical characteristics of corrosion behavior of organic/dacromet composite systems pretreated with gamma-aminopropyltriethoxysilane[J]. Surf. Coat. Technol., 2006, 200: 4967
[15] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[15] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[1] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[2] 宋琴, 武俊伟, 张辉, 杜翠薇. 钛基DSA阳极在电镀铬工艺中的应用研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 507-514.
[3] 肖伟,单大勇,陈荣石. 熔模铸造ZA93镁合金的化学镀镍工艺研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 90-94.
[4] 邢琳琳,郑雁军,崔立山,孙茂虎,邵明增,卢贵武. 水蒸汽影响氧化铝膜生长的研究新进展[J]. 中国腐蚀与防护学报, 2011, 31(6): 409-413.
[5] 梁伟,叶红齐,陈玉琼,刘秀云. 乳液聚合法包覆片状铝粉及其耐腐蚀性研究[J]. 中国腐蚀与防护学报, 2011, 31(1): 68-71.
[6] 谢德明 . 富锌漆研究进展[J]. 中国腐蚀与防护学报, 2004, 24(5): 314-320 .
[7] 王家军;孙榆芳;叶锐曾. Ti-N扩散障碍膜的组织结构及高温热稳定性[J]. 中国腐蚀与防护学报, 1994, 14(3): 247-251.