Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 287-294    DOI: 10.11902/1005.4537.2016.096
  本期目录 | 过刊浏览 |
紫外光电子能谱和X射线光电子能谱表征在金属材料腐蚀中的应用
王胜刚(),孙淼,龙康
中国科学院金属研究所 沈阳材料科学国家 (联合) 实验室 沈阳 110016
Progress in Characterization of Metallic Materials Corrosion by Ultraviolet Photoelectron Spectroscopy and X-ray Photoelectron Spectroscopy
Shenggang WANG(),Miao SUN,Kang LONG
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2456 KB)   HTML
摘要: 

利用紫外光电子能谱 (UPS) 对比表征了纳米和普通晶粒的304不锈钢、工业纯铝以及工业纯铁室温时的价电子结构。利用X射线光电子能谱 (XPS) 表征了上述材料在不同浓度盐酸溶液中浸泡不同时间后,表面氧化膜的电子结构;以及纳米和普通晶粒的304不锈钢在空气中高温氧化 (室温至900 ℃升温阶段,900 ℃下恒温24 h) 后,氧化膜的电子结构。根据这些实验结果建立了金属材料腐蚀性能与材料的价电子结构和氧化膜电子结构之间的关系,提出了金属材料腐蚀性能本征参量概念。

关键词 腐蚀价电子结构氧化膜电子结构X射线光电子能谱紫外光电子能谱    
Abstract

In fact, the metallic material corrosion process may intrinsically involve subprocesses such as the exchange of valence electron between metallic atoms and ions in corrosive medium, the formation of oxide scale, the migration of corrosive species through the formed oxide scale, and the interaction between oxidation scale and corrosive medium. Therefore, the energy state of the valence electron of components of metallic material may play an important role in the corrosion process, thus for reveal which, ultraviolet photoelectron spectroscope (UPS) and X-ray photoelectron spectroscope (XPS) may become useful tool. Herewith new progress in this respect is subsequently introduced. The valence electron energy state of components for bulk nanocrystalline materials 304 stainless steel (BN-SS304), industrial pure aluminum (BN-Al) and ingot iron (BNII), as well as their counterparts of conventional microcrystalline ones (CP-SS304), (CP-Al) and (CPII) was characterized by UPS at room temperature. The valence electron energy state of components of the oxide scale formed on these metallic materials due to corrosion in hydrochloric acid solutions, and the oxide scales formed on BN-SS304 and CP-SS304 due to air oxidation at 900 ℃ were comparatively studied by XPS. The above aquired results may enable one to establish the relationship between the corrosion performance with the valence electron energy state of components of these metallic materials, and to figure the electron structure of components of the corresponding formed oxide scales, as well. Furthermore, a new concept of intrinsic parameter related with metallic material corrosion was proposed.

Key wordscorrosion    valence electron structure    oxide scale    XPS    UPS
    
基金资助:国家自然科学基金项目 (51171199) 和国家重点基础研究发展计划项目 (2010CB934603) 资助

引用本文:

王胜刚, 孙淼, 龙康. 紫外光电子能谱和X射线光电子能谱表征在金属材料腐蚀中的应用[J]. 中国腐蚀与防护学报, 2016, 36(4): 287-294.
Shenggang WANG, Miao SUN, Kang LONG. Progress in Characterization of Metallic Materials Corrosion by Ultraviolet Photoelectron Spectroscopy and X-ray Photoelectron Spectroscopy. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 287-294.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.096      或      https://www.jcscp.org/CN/Y2016/V36/I4/287

图1  纳米晶和普通工业纯铁的紫外光电子能谱[14]
图2  纳米晶和普通304不锈钢的紫外光电子能谱[15]
图3  纳米晶和普通工业纯铝的紫外光电子能谱[16]
图4  纳米和普通晶粒的304不锈钢在0.5 mol/L HCl溶液中室温浸泡30 d后的腐蚀形貌[15]
图5  纳米和普通晶粒的工业纯铝在0.25 mol/L HCl溶液中室温浸泡9 d后的腐蚀形貌[16]
图6  纳米和普通晶粒的304不锈钢在0.5 mol/L HCl 溶液中室温浸泡30 d后,氧化膜中Cl-的结合能和原子分数沿氧化膜的截面分布规律[15]
图7  纳米和普通晶粒的工业纯铝在0.25 mol/L HCl溶液中室温浸泡9 d后,氧化膜中Cl-的结合能和原子分数沿氧化膜的截面分布规律[16]
图8  纳米和普通晶粒的304不锈钢在空气中室温至900 ℃阶段以及900 ℃恒温24 h的氧化动力学曲线[17]
[1] Williams D E, Newman R C, Song Q, et al.Passivity breakdown and pitting corrosion of binary alloys[J]. Nature, 1991, 350: 216
[2] Ras M H, Pistorius P C.Possible mechanisms for the improvement by vanadium of the pitting corrosion resistance of 18% chromium ferritic stainless steel[J]. Corros. Sci., 2002, 44: 2479
[3] Gahari M, Krouse D, Laycock N, et al.Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: Extraction of pit propagation parameters[J]. Corros. Sci., 2015, 100: 23
[4] Hao J L, Gao Y J, Dong Z H.Effects of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2015, 35(6): 525
[4] (郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 525)
[5] Renner F U, Stierle A, Dosch H, et al.Initial corrosion observed on the atomic scale[J]. Nature, 2006, 439: 707
[6] Punckt C, Bolscher M, Rotermund H H, et al.Sudden onset of pitting corrosion on stainless steel as a phenomenon[J]. Science, 2004, 305: 1133
[7] Martin F A, Bataillon C, Cousty J.In situ AFM detection of pit onset location on a 304L stainless steel[J]. Corros. Sci., 2008, 50: 84
[8] Neil B, Gerald H M, Frederick S P.Introduction to the High-Temperature Oxidation of Metals [M]. London: Cambridge University Press and Higher Education Press, 2010
[9] Wang P, Deng S J, He Y D, et al.Oxidation and hot corrosion behavior of Al2O3/YSZ coatings prepared by cathode plasma electrolytic deposition[J]. Corros. Sci., 2016, 109: 13
[10] Ras M H, Pistorius P C.Possible mechanisms for the improvement by vanadium of the pitting corrosion resistance of 18% chromium ferritic stainless steel[J]. Corros. Sci., 2002, 44: 2479
[11] Liu Z H, Qi Q, Yan Y J, et al.Effect of residual phase and grain size on corrosion resistance of SiC ceramics in mixed HF-HNO3 acid solution[J]. J. Inorg. Mater., 2016, 31(6): 661
[12] Jiang D M, Liu Y, Liang S, et al.The effect of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy[J]. J. Alloy. Compd., 2016, 681: 57
[13] Saeed A, Khan Z A, Nazir M H.Time dependent surface corrosion analysis and modeling of automotive steel under a simplistic model of variations in environmental parameters[J]. Mater. Chem. Phys., 2016, 178: 65
[14] Wang S G, Sun M, Long K.The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions with different concentrations[J]. Mater. Chem. Phys., 2011, 127: 459
[15] Wang S G, Sun M, Long K.The enhanced even and pitting corrosion resistances of bulk nanocrystalline steel in HCl solution[J]. Steel Res. Int., 2012, 83: 800
[16] Wang S G, Huang Y J, Han H B, et al.The electrochemical corrosion characterization of bulk nanocrystalline aluminium by X-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy[J]. J. Electroanal. Chem., 2014, 724: 95
[17] Wang S G, Sun M, Han H B, et al.The high-temperature oxidation of bulk nanocrystalline 304 stainless steel in air[J]. Corros. Sci., 2013, 72: 64
[18] Wang S G, Huang Y J, Sun M, et al.The electrochemical corrosion of bulk nanocrystalline aluminum in acidic sodium sulfate solutions at room temperature[J]. J. Phys. Chem., 2015, 119C: 9851
[19] Wang S G, Sun M, Long K, et al.The electronic structure characterization of oxide film on bulk nanocrystalline 304 stainless steel in hydrochloric acid solution[J]. Electrochim. Acta, 2013, 112: 371
[20] Li W, Li D Y.Variations of work function and corrosion behaviors of deformed copper surfaces[J]. Appl. Surf. Sci., 2004, 240: 388
[21] Li W, Li D Y.Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54: 445
[22] Chen C, Li D Y, Shang C J.Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear[J]. Electrochim. Acta, 2009, 55: 118
[23] Xu P, Zhang C, Wang W, et al.Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating[J]. Electrochim. Acta, 2016, 206: 61
[24] Otero M, Lener G, Trincavelli J, et al.New kinetic insight into the spontaneous oxidation process of lithiumin air by EPMS[J]. Appl. Surf. Sci., 2016, 383: 64
[25] Li N, Li Y, Wang S G, et al.Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel[J]. Electrochim. Acta, 2006, 52: 760
[26] Chimi Y, Kitsunai Y, Kasahara S, et al.Correlation between locally deformed strcture and oxide film properties in austenitic stainless steel irradiated with neutrons[J]. J. Nucl. Mater., 2016, 475: 71
[27] Idczak K, Idczak R, Konieczny R.An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS[J]. Physica B, 2016, 491: 37
[28] Si J J, Chen X H, Cai Y H, et al.Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions[J]. Corros. Sci., 2016, 107: 123
[29] Huang Z, Peng X, Xu C, et al.Effect of alloy nanocrystallization and Cr distribution on the development of a chromia scale[J]. J. Electrochem. Soc., 2009, 156: 95
[30] Merz M D.Oxidation resistance of fine-grained sputter-deposited 304 stainless steel[J]. Metall. Trans., 1979, A10: 71
[31] Goedjen J G, Shores D A.The effect of alloy size on the transient oxidation behavior of an alumina-forming alloy[J]. Oxid. Met., 1992, 37: 125
[32] Zhang B, Liu L, Li T S, et al.Adsorption and diffusion behavior of Cl- on sputtering Fe-20Cr nanocrystalline thin film in acid solution (pH=2)[J]. J. Mater. Sci. Technol., 2015, 31: 1198
[33] Zhang L, Chen Y, Wan Q L, et al.Electrochemical corrosion behaviors of straight WC-Co alloys: Exclusive variation in grain sizes and aggressive media[J]. Int. J. Refract. Met. Hard Mater., 2016, 57: 70
[34] Meng G Z, Li Y, Shao Y W, et al.Effect of microstructures on corrosion behavior of nickel coating: (II) Competitive effect of grain size and twins density on corrosion behavior[J]. J. Mater. Sci. Technol., 2016, 32(5): 465
[35] Lv J L, Liang T X, Wang C, et al.Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel[J]. Mater. Sci. Eng., 2016, 62C: 558
[36] Balusamy T, Sankar Narayanan T S N, Ravichandran K, et al. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel[J]. Corros. Sci., 2013, 74: 332
[37] Balusamy T, Satendra K, Sankara Narayanan T S N. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel[J]. Corros. Sci., 2010, 52: 3826
[38] Chen T, John H, Xu J, et al.Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718.Part 1: Effect of machine hammer peening[J]. Corros. Sci., 2013, 77: 230
[39] Zhang L, Zhang Y K, Lu J Z, et al.Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion[J]. Corros. Sci., 2013, 66: 5
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.