Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 400-406    DOI: 10.11902/1005.4537.2014.181
  本期目录 | 过刊浏览 |
盐酸介质中Brönsted酸离子液体对Q235钢的缓蚀行为
李明丽1,2,刘丹2,曹淑云2,彭坤1,梁平3,史艳华3,桂建舟1,2(),刘峰3
2. 天津工业大学环境与化学工程学院 天津 300387
3. 辽宁石油化工大学机械工程学院 抚顺 113001
Corrosion Inhibition of Q235 Steel in HCl Solution by Brönsted Acid Ionic Liquid
Mingli LI1,2,Dan LIU2,Shuyun CAO2,Kun PENG1,Ping LIANG3,Yanhua SHI3,Jianzhou GUI1,2(),Feng LIU3
1. Division of Chemistry, Chemical Engineering and Environment, Liaoning Shihua University, Fushun 113001, China
2. School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
3. College of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(1872 KB)   HTML
  
摘要: 

利用电化学方法研究了Brönsted酸离子液体1-甲基-3- (4-磺酸基丁基) 咪唑硫酸氢盐 ([(CH2)4SO3HMIm][HSO4]) 在0.5 mol/L HCl溶液中对Q235钢的缓蚀作用。结果表明:25 ℃下该酸性离子液体浓度在0~14 mmol/L时,缓蚀率随浓度增加而增加;浓度在14~16 mmol/L时,缓蚀率随浓度增加而减小;离子液体浓度在14 mmol/L时,缓蚀率可达80.7%。动电位极化曲线结果表明,该离子液体是一种混合型缓蚀剂。Q235钢表面腐蚀前后的SEM结果证实了该酸性离子液体在盐酸介质中有缓蚀能力。XPS分析表明,在Q235钢表面存在离子液体分子吸附形成的保护膜,抑制了析氢和Fe溶解反应。

关键词 缓蚀剂电化学方法Brönsted酸离子液体Q235钢    
Abstract

The inhibition effect of Brönsted acid ionic liquids (BAIL) 1-methyl-3-(4-sulfonic acid) butyl imidazolium hydrogen sulfate ([(CH2)4SO3HMIm][HSO4]) on the corrosion of Q235 steel in 0.5 mol/L HCl solution was investigated by electrochemical measurements. The results showed that the BAIL could suppress the corrosion process of Q235 steel in HCl solution at 25 ℃ through adsorption. The inhibition efficiency increased with the increasing concentration of BAIL in the range 0~14 mmol/L, but decreased with the increasing concentration of BAIL in the range 14~16 mmol/L. The best inhibition efficiency was 80.7% for the solution with 14 mmol/L BAIL. The potentiodynamic polarization curves revealed that the BAIL could act as a mixed-type inhibitor. SEM observation of Q235 surface showed that the adsorption of inhibitor molecules on Q235 surface could form a film of BAIL, and which could prevent both the hydrogen evolution and iron dissolution. This inhibition mechanism was proved further by the results of XPS analysis.

Key wordsinhibitor    electrochemical measurement    Brönsted acid ionic liquid    Q235 steel
    
ZTFLH:     
基金资助:国家自然科学基金项目 (21576211),教育部新世纪优秀人才支持计划项目 (NCET-11-1011)及天津市应用基础与前沿技术研究项目 (13JCYBJC41600) 资助

引用本文:

李明丽, 刘丹, 曹淑云, 彭坤, 梁平, 史艳华, 桂建舟, 刘峰. 盐酸介质中Brönsted酸离子液体对Q235钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 400-406.
Mingli LI, Dan LIU, Shuyun CAO, Kun PENG, Ping LIANG, Yanhua SHI, Jianzhou GUI, Feng LIU. Corrosion Inhibition of Q235 Steel in HCl Solution by Brönsted Acid Ionic Liquid. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 400-406.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.181      或      https://www.jcscp.org/CN/Y2015/V35/I5/400

图1  IL的分子结构
图2  不同浓度IL溶液的Nyquist图
图3  拟合电化学阻抗谱所用等效电路
Cinh mmolL-1 Rs Ωcm-2 Cdl μFcm-2 n Rct Ωcm-2 IE %
0 0.50 130 0.89 118.6 ---
10 2.7 89 0.84 246.3 51.9
12 2.7 85 0.85 257.2 53.9
14 1.8 75 0.81 617.2 80.8
16 1.8 79 0.80 464.1 74.5
表1  Nyquist图拟合后得到的电化学参数
图4  Q235钢在不同浓度IL溶液中的动电位极化曲线
Cinh mmol/L Ecorr mV Icorr μAcm-2 βc βa IE %
0 -490 144.5 122 64 ---
10 -497 71.1 142 65 50.8
12 -499 68.3 151 68 52.7
14 -498 27.87 164 73 80.7
16 -494 39.22 145 69 72.9
表2  动电位极化曲线中相关电化学参数
图5  Q235钢表面的SEM像
图6  Q235钢表面的XPS谱
图7  Q235钢表面各元素的XPS谱
图8  IL在Q235钢表面的缓蚀机理
[1] Zhou X, Yang H, Wang F. [BMIM] BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution[J]. Electrochim. Acta, 2011, 56(11): 4268
[2] Ashassi-Sorkhabi H, Es'haghi M. Corrosion inhibition of mild steel in acidic media by [BMIm] Br ionic liquid[J]. Mater. Chem. Phys., 2009, 114(1): 267
[3] Likhanova N V, Domínguez-Aguilar M A, Olivares-Xometl O, et al. The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment[J]. Corros. Sci., 2010, 52: 2088
[4] Zhang Q B, Hua Y X. Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids[J]. Mater.Chem. Phys., 2010, 119(1): 57
[5] Zhou X, Yang H Y, Wand F H. Corrosion inhibition by sorbitol/diethylenetriamine condensation product for carbon steel in 3.5%NaCl saturated Ca(OH)2 solution[J]. Acta Phys.-Chim. Sin., 2011, 27(3): 647
[6] Gui J, Cong X, Liu D, et al. Novel Brönsted acidic ionic liquid as efficient and reusable catalyst system for esterification[J]. Catal. Co- mmun., 2004, 5(9): 473
[7] Benabdellah M, Aouniti A, Dafali A, et al. Investigation of the inhibitive effect of triphenyltin 2-thiophene carboxylate on corrosion of steel in 2M H3PO4 solutions[J]. Appl. Surf. Sci., 2006, 252(23): 8341
[8] Li X H, Xie X G. Inhibition effect of pyrimidine derivatives on the corrosion of steel in hydrocloric acid solution[J]. Acta Phys.-Chim. Sin., 2013, 29(10): 2221 (李向红, 谢小光. 嘧啶衍生物对钢在盐酸溶液中的缓蚀作用[J]. 物理化学学报, 2013, 29(10): 2221)
[9] Zhang X M, Liu R Q. Inhibition action and adsorption behavior of two tetrazoleberivative inhibitors on copper in alkaline medium[J]. J. Mater. Prot., 2009, 42(12): 24 (张雪梅, 刘瑞泉. 2种四唑衍生物缓蚀剂在碱性介质中对铜的缓蚀性能和吸附行为[J]. 材料保护, 2009, 42(12): 24)
[10] Zhang Q B, Hua Y X. Effect of alkylimidazoliumlionc liquids on the corrosion inhibition of copper in sulfuric acid solution[J]. Acta Phys.-Chim. Sin., 2011, 27(3): 655
[11] Yu H H, Zhang J, Du M. Inhibition performance of compound inhibitor of imidazoline phosphate for Q235 steel[J]. Surf. Technol., 2010, 39(3): 48 (于会华, 张静, 杜敏. 含咪唑啉磷酸酯的复配缓蚀剂对 Q235 钢的缓蚀行为研究[J]. 表面技术, 2010, 39(3): 48)
[12] Wagner C D. Handbook of X-ray Photoelectron Spectroscopy [M].Eden Prairie: J. F. Moulder and G. E. Muilenberg Perkin-Elmer Corp., 1979
[13] Freire L, Nóvoa X R, Montemor M F, et al. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials[J]. Mater. Chem. Phys., 2009, 114(2): 962
[14] Li P, Lin J Y, Tan K L, et al. Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine[J]. Electrochim. Acta, 1997, 42(4): 605
[15] Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure[J]. Phys. Scr., 1970, 1(5/6): 286
[16] Olivares O, Likhanova N V, Gomez B, et al. Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment[J]. Appl. Surf. Sci., 2006, 252(8):2894
[17] Olivares-Xometl O, Likhanova N V, Dominguez-Aguilar M A, et al. Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment[J]. Appl. Surf. Sci., 2006, 252(6): 2139
[18] Caporali S, Ghezzi F, Giorgetti A, et al. Interaction between an imidazolium based ionic liquid and the AZ91D magnesium alloy[J]. Adv. Eng. Mater., 2007, 9(3): 185
[19] Zhou X, Yang H Y, Wang F H. Corrosion inhibition by sorbitol/diethylenetriamine condensation product for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution[J]. Acta Phys.-Chim. Sin., 2011, 27(3): 647
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[12] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.