Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 351-357    DOI: 10.11902/1005.4537.2017.094
  研究报告 本期目录 | 过刊浏览 |
L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响
马景灵1,2(), 通帅1, 任凤章1, 王广欣1,2, 李亚琼1,2, 文九巴1
1 河南科技大学材料科学与工程学院 洛阳 471023
2 河南科技大学高纯材料研究中心 洛阳 471023
Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution
Jingling MA1,2(), Shuai TONG1, Fengzhang REN1, Guangxin WANG1,2, Yaqiong LI1,2, Jiuba WEN1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, China
全文: PDF(3060 KB)   HTML
摘要: 

选用防锈铝合金3102作为铝空气电池阳极材料,研究有机/无机复合缓蚀剂L-半胱氨酸/ZnO对3102铝合金在4 mol/L NaOH溶液中腐蚀及放电性能的影响。结果表明:复合缓蚀剂明显降低了3102铝合金的自腐蚀速率。在NaOH及NaOH/L-半胱氨酸溶液中,铝阳极溶解由电荷转移控制;而在含ZnO的溶液中,铝阳极的溶解由锌盐及腐蚀产物的扩散控制。在4 mol/L NaOH碱性溶液中添加L-半胱氨酸/ZnO复合缓蚀剂,3102铝合金作为阳极材料的铝空气电池的放电性能明显得到改善。

关键词 3102铝合金空气电池缓蚀剂L-半胱氨酸ZnO    
Abstract

The severe corrosion of Al-anode is the main barrier preventing the application of Al for air battery with alkaline solution. In this paper, the influence of organic/inorganic compound inhibitor of L-Cysteine/ZnO on the corrosion and electrochemical performance of 3102 Al-alloy were examined in 4 mol/L alkaline solutions. Results show that the corrosion of 3102 Al-alloy is significantly restrained by the L-Cysteine/ZnO compound inhibitor. The dissolution of Al-anode is mainly controlled by the charge-transfer in NaOH and NaOH L-Cysteine solutions, but in NaOH/ZnO and NaOH/L-Cysteine/ZnO solutions, the discharge is mainly controlled by the diffusion of the zincate ions and corrosion products. By adding L-Cysteine/ZnO compound inhibitor in 4 mol/L NaOH alkaline solution, the discharging performance of aluminum air battery with 3102 Al-anode was improved obviously.

Key words3102 Al-alloy    air battery    corrosion inhibitor    L-Cysteine    ZnO
收稿日期: 2017-06-21     
ZTFLH:  TM911  
基金资助:河南省科技攻关计划(162102210051) 和河南科技大学大学生研究训练计划(SRTP2017031)
作者简介:

作者简介马景灵,女,1970 年生,博士

引用本文:

马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 351-357.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.094      或      https://www.jcscp.org/CN/Y2018/V38/I4/351

图1  3102铝合金在4种不同溶液中的极化曲线
Solution EcorrV vs Hg/HgO IcorrmAcm-2 RpΩcm2 Self-corrosion rate νmgcm-2min-1 Inhibition rate%
NaOH -1.60 12.31 9.7 0.29 ---
NaOH/L-Cysteine -1.57 1.13 40.5 0.15 48
NaOH/ZnO -1.68 8.65 11.8 0.16 45
NaOH/L-Cysteine /ZnO -1.68 7.67 21.9 0.12 59
NaOH(5NAl)[21] -1.67 16.1 7.9 --- ---
表1  3102铝合金在4种不同溶液中的腐蚀参数
图2  铝空气电池在4种不同溶液中20 mAcm-2下的放电曲线
Electrolyte Operating voltage / V Anodic utilization%
NaOH 1.07 9.2
NaOH+L-Cysteine 0.96 12.4
NaOH+ZnO 1.14 16.1
NaOH+L-Cysteine+ZnO 1.16 28.7
表2  铝空气电池在不同电解质中的放电性能
图4  3102铝合金在4 mol/L NaOH溶液中放电后的形貌及EDS结果
图3  3102铝合金在4种不同溶液中放电后的表面形貌
图5  3102铝合金在4 mol/L NaOH+0.03 mol/L L-半胱氨酸和4 mol/L NaOH+0.03 mol/L L-半胱氨酸+0.2 mol/L ZnO溶液中放电后表面腐蚀产物的XRD谱
图6  3102铝合金在4 mol/L NaOH+0.2 mol/L ZnO和4 mol/L NaOH+0.03 mol/L L-半胱氨酸+0.2 mol/L ZnO溶液中放电后表面腐蚀示意图
图7  3102铝合金在4种不同溶液中的电化学阻抗
图8  3102铝合金在4种不同溶液中的等效电路
[1] Rahman M A, Wang X J, Wen C E.High energy density metal-air batteries: A review[J]. J. Electrochem. Soc., 2013, 160: A1759
[2] Hori Y, Takao J, Shomon H.Aluminium alloys for aluminium primary cell[J]. Electrochim. Acta, 1985, 30: 1121
[3] Egan D R, De León C P, Wood R J K, et al. Developments in electrode materials and electrolytes for aluminium-air batteries[J]. J. Power Sour., 2013, 236: 293
[4] El Abedin S Z, Saleh A O. Characterization of some aluminium alloys for application as anodes in alkaline batteries[J]. J. Appl. Electrochem., 2004, 34: 331
[5] Paramasivam M, Jayachandran M, Iyer S V.Influence of alloying additives on the performance of commercial grade aluminium as galvanic anode in alkaline zincate solution for use in primary alkaline batteries[J]. J. Appl. Electrochem., 2003, 33: 303
[6] Sun Z G, Lu H M, Fan L, et al.Performance of Al-air batteries based on Al-Ga, Al-In and Al-Sn alloy electrodes[J]. J. Electrochem. Soc., 2015, 162: A2116
[7] Gudić S, Smoljko I, Kliškić M.The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution[J]. J. Alloy. Compd., 2010, 505: 54
[8] Elango A, Periasamy V M, Paramasivam M.Study on polyaniline-ZnO used as corrosion inhibitors of 57S aluminium in 2 M NaOH solution[J]. Anti Corros. Methods Mater., 2009, 56: 266
[9] Wang J B, Wang J M, Shao H B, et al.The corrosion and electrochemical behaviour of pure aluminum in alkaline methanol solutions[J]. J. Appl. Electrochem., 2007, 37: 753
[10] Sun Z G, Lu H M.Performance of Al-0.5In as anode for Al-air battery in inhibited alkaline solutions[J]. J. Electrochem. Soc., 2015, 162: A1617
[11] Abiola O K, Otaigbe J O E. The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution[J]. Corros. Sci., 2009, 51: 2790
[12] Wang J B, Wang J M, Shao H B, et al.The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol-water mixed solutions[J]. Mater. Sci., 2009, 60: 269
[13] Zeng X X, Wang J M, Wang Q L, et al.The effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical performances of pure aluminum in an alkaline methanol-water solution[J]. Mater. Chem. Phys., 2010, 121: 459
[14] Rashvand avei M, Jafarian M, Moghanni Bavil Olyaei H, et al. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries[J]. Mater. Chem. Phys., 2013, 143: 133
[15] Wang C, Qiu P D, Cai K D, et al.Research progress of the key technologies for aluminum air battery[J]. Chem. Ind. Eng. Prog., 2016, 35: 1396(王诚, 邱平达, 蔡克迪等. 铝空气电池关键技术研究进展[J]. 化工进展, 2016, 35: 1396)
[16] Revel R, Audichon T, Gonzalez S.Non-aqueous aluminium-air battery based on ionic liquid electrolyte[J]. J. Power Sour., 2014, 272: 415
[17] Gelman D, Lasman I, Elfimchev S, et al.Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications[J]. J. Power Sour.,2015, 285: 100
[18] Wang D P, Gao L X, Zhang D Q.Corrosion inhibition of L-Cysteine for AA5052 Al-alloy anode in alkaline solution[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 311(王大鹏, 高立新, 张大全. 碱性溶液中L-半胱氨酸对AA5052铝合金阳极缓蚀作用研究[J]. 中国腐蚀与防护学报, 2015, 35: 311)
[19] Mert B D, Yazıcı B.The electrochemical synthesis of poly (pyrrole-co-o-anisidine) on 3102 aluminum alloy and its corrosion protection properties[J]. Mater. Chem. Phys., 2011, 125: 370
[20] Liang F, Lu H M, Leng J.Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries[J]. Electrochim. Acta, 2015, 165: 22
[21] Cho Y J, Park I J, Lee H J, et al.Aluminum anode for aluminum-air battery-Part I: Influence of aluminium purity[J]. J. Power Sour., 2015, 277: 370
[22] Ma J L, Wen J B.Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy[J]. J. Alloy. Compd., 2010, 496: 110
[23] Moutarlier V, Gigandet M P, Normand B, et al.EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species[J]. Corros. Sci., 2005, 47: 937
[24] Zhang Y, Li L R, Yuan S S, et al.Electrical properties of the interfaces in bulk heterojunction organic solar cells investigated by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 109: 221
[25] Osório R, Freitas E S, Garcia A.EIS parameters and cell spacings of an Al-Bi alloy in NaCl solution[J]. Electrochim. Acta, 2013, 108: 781
[26] Chen X, Tian W M, Li S M, et al.Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution[J]. Chin. J. Aeronaut., 2016, 29: 1142
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[12] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[13] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.