Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 131-138    DOI: 10.11902/1005.4537.2019.236
  研究报告 本期目录 | 过刊浏览 |
淀粉接枝共聚物对Zn的缓蚀性能
王亚婷1, 王棵旭1, 高鹏翔1, 刘冉1, 赵地顺1(), 翟建华1, 屈冠伟2
1.河北科技大学化学与制药工程学院 石家庄 050000
2.河北奥环胶粘制品有限公司 保定 071000
Inhibition for Zn Corrosion by Starch Grafted Copolymer
WANG Yating1, WANG Kexu1, GAO Pengxiang1, LIU Ran1, ZHAO Dishun1(), ZHAI Jianhua1, QU Guanwei2
1.College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology Shijiazhuang 050000, China
2.Hebei Aohuan Adhesive Products Co. , Ltd. , Baoding 071000, China
全文: PDF(3395 KB)   HTML
摘要: 

以过硫酸铵-亚硫酸氢钠为引发剂,将丙烯酰胺单体接枝到淀粉上制备了淀粉接枝共聚物 (St-g-PAM),可作为一种新型“绿色”缓蚀剂。通过失重实验和电化学测试研究了St-g-PAM对1.0 mol/L HCl溶液中Zn的缓蚀效果。结果表明,St-g-PAM在HCl溶液中对Zn具有较好的缓蚀性,是一种混合抑制型缓蚀剂。缓蚀率随St-g-PAM质量浓度的增加而增大;但当浓度超过50 mg/L时,缓蚀率增加变缓慢。在20~50 ℃下,St-g-PAM在Zn表面的吸附过程与Langmuir吸附模型一致。动电位极化曲线和电化学阻抗测试结果表明,St-g-PAM在HCl溶液中对Zn有较好的缓蚀作用,表现为St-g-PAM存在条件下,Zn腐蚀电流密度减小,电荷转移电阻增大。

关键词 淀粉接枝共聚物Zn缓蚀剂缓蚀机理    
Abstract

Starch grafted copolymer (St-g-PAM) was prepared by grafting acrylamide monomer onto starch with ammonium persulfate sodium bisulfite as initiator, which can be used as a new "green" inhibitor. Then the inhibition effect of St-g-PAM on Zn in 1.0 mol/L HCl solution was studied by mass loss method and electrochemical techniques. The results show that St-g-PAM is a mixed inhibitor with good inhibition effect for Zn corrosion in HCl solution, while the inhibition efficiency increases with the increase of St-g-PAM concentration. However, the inhibition efficiency increases slowly when the St-g-PAM concentration exceeds 50 mg/L. At 20~50 ℃, the adsorption process of St-g-PAM on Zn sheet is consistent with Langmuir adsorption model. According to the results of potentiodynamic polarization and EIS measurements, the inhibition ability of St-g-PAM for Zn corrosion in HCl solution in the presence of St-g-PAM can be expressed in both of the decreased corrosion current density and increased charge transfer resistance values.

Key wordsstarch graft copolymer    zinc    corrosion inhibitor    corrosion inhibition mechanism
收稿日期: 2019-11-18     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金(20576026);石家庄市科学技术研;究与发展计划(161070251A)
通讯作者: 赵地顺     E-mail: zhao_dsh@hebust.edu.cn
Corresponding author: ZHAO Dishun     E-mail: zhao_dsh@hebust.edu.cn
作者简介: 王亚婷,女,1995年生,硕士生

引用本文:

王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
Yating WANG, Kexu WANG, Pengxiang GAO, Ran LIU, Dishun ZHAO, Jianhua ZHAI, Guanwei QU. Inhibition for Zn Corrosion by Starch Grafted Copolymer. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 131-138.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.236      或      https://www.jcscp.org/CN/Y2021/V41/I1/131

图1  St-g-PAM的红外谱图
c / mg·L-120 / ℃30 / ℃40 / ℃50 / ℃
065.6071.1184.3395.25
1015.0519.2525.8534.05
209.6414.7321.3527.71
306.6210.1515.8219.75
404.867.4411.1415.63
502.854.816.639.85
602.584.276.279.51
702.173.995.898.73
801.773.465.167.73
表1  不同温度下锌片在不同质量浓度St-g-PAM的1.0 mol/L HCl溶液中的腐蚀速率
图2  不同温度下缓蚀率与缓蚀剂St-g-PAM质量浓度的关系曲线
图3  Zn在含不同质量浓度St-g-PAM的1.0 mol/L HCl溶液中的极化曲线

c

mg·L-1

Ecorr

V

Icorr

μA·cm-2

-bc

V·dec-1

ba

V·dec-1

η

%

0-0.74112.5902.9255.365---
10-0.7312.5645.5858.33579.63
20-0.7282.0614.3857.18583.63
30-0.7251.6143.6505.19087.18
40-0.7231.4453.0894.95888.52
50-0.7220.9924.2156.07592.16
表2  Zn在不同质量浓度St-g-PAM条件下的极化曲线参数
图4  Zn在含不同质量浓度St-g-PAM的1.0 mol/L HCl溶液中的Nyquist图

c

mg·L-1

Rs

Ω·cm2

Rct

Ω·cm2

a

Cdl

μF·cm-2

η

%

02.57465.090.9165142.56---
102.421246.60.8921108.6073.61
201.823361.20.921285.4081.98
303.854520.60.861874.7287.50
402.094679.70.906767.3090.42
502.248834.50.918355.6192.20
表3  Zn在不同质量浓度St-g-PAM下的阻抗参数
图5  拟合电化学阻抗谱的等效电路图
图6  St-g-PAM在Zn表面的Langmuir吸附等温线
Experimental methodTemperature ℃R2slopeInterceptKL·mg-1
Mass loss200.9990.983.560.28
300.9970.994.660.21
400.9910.996.000.17
500.9911.007.030.14
Polarization curve200.9981.042.670.37
EIS200.9991.013.810.26
表4  c/θ-c直线回归参数表
图7  St-g-PAM在Zn表面吸附的lnK-1/T的关系曲线
Temperature / ℃ΔG0 / kJ·mol-1ΔH0 / kJ·mol-1ΔS0 / kJ·mol-1
20-30.58-18.0742.68
30-30.94-18.0742.46
40-31.30-18.0742.25
50-31.88-18.0742.73
表5  St-g-PAM在Zn表面的吸附热力学参数
图8  St-g-PAM在Zn表面吸附的lnν与1/T的关系曲线
c / mg·L-1R2SlopeEa / kJ·mol-1
00.9974-1207.3310.04
100.9906-2579.4921.45
200.9930-3347.3927.83
300.9981-3504.2829.13
400.9989-3682.2030.61
500.9951-3817.9731.74
600.9951-4045.3933.63
700.9909-4121.0834.35
800.9912-4256.5135.39
表6  由lnν-1/T关系曲线拟合得到的腐蚀动力学参数
图9  St-g-PAM在Zn表面吸附的 ln (ν/T) 与1/T的关系曲线
c / mg·L-1R2ΔH / kJ·mol-1ΔS / J·mol-1·K-1
00.99527.57-184.35
100.993719.09-157.48
200.989625.36-139.21
300.997426.73-137.63
400.998928.21-135.33
500.988829.30-132.55
600.990731.22-130.28
700.991532.14-127.71
800.989133.54-126.33
表7  由ln (ν/T)-1/T直线拟合得到的腐蚀动力学参数
图10  Zn在20 ℃下1.0 mol/L HCl溶液中浸泡2 h的SEM和AFM像
1 Abdallah M, Ahmed S A, Altass H M, et al. Competent inhibitor for the corrosion of zinc in hydrochloric acid based on 2,6-bis-[1-(2-phenylhydrazono) ethyl] pyridine [J]. Chem. Eng. Commun., 2019, 206: 137
2 Ren T G, Su H S, Liu Y, et al. Research progress of metal corrosion inhibitors [J]. Chem. Res., 2018, 29: 331
2 任铁钢, 苏慧双, 刘月等. 金属缓蚀剂的研究进展 [J]. 化学研究, 2018, 29: 331
3 Shi H, Shi J, Tang J J, et al. Corrosion inhibition of cetyltrimethyl ammonium bromide for zinc in hydrochloric acid solution [J]. Clean. World, 2012, 28(10): 22
3 史慧, 史静, 唐俊杰等. 十六烷基三甲基溴化铵在盐酸介质中对锌的缓蚀作用 [J]. 清洗世界, 2012, 28(10): 22
4 Wang X, Ren S F, Jiang H, et al. Preparation method and research direction of plant corrosion inhibitors [J]. Surf. Technol., 2018, 47(3): 196
4 王霞, 任帅飞, 蒋欢等. 植物缓蚀剂的制备方法与研究方向 [J]. 表面技术, 2018, 47(3): 196
5 Abiola O K, James A O. The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution [J]. Corros. Sci., 2010, 52: 661
6 Liang M, Zhou H B, Huang Q M, et al. Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries [J]. J. Appl. Electrochem., 2011, 41: 991
7 Deyab M A. Hydroxyethyl cellulose as efficient organic inhibitor of zinc-carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies [J]. J. Power Sources, 2015, 280: 190
8 Du Q, Wei H, Li A M, et al. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater [J]. Sci. Total Environ., 2017, 601/602: 1628
9 Fu H, Li X H, Li Y X, et al. Corrosion inhibition of cassava starch graft acryl amide copolymer for cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 265
9 付惠, 李向红, 李云仙等. 木薯淀粉接枝共聚物在盐酸介质中对冷轧钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2011, 31: 265
10 Li X H, Fu H, Li Y X, et al. Corrosion inhibition of cassava starch graft copolymer for Al in HCl solution [J]. Corros. Sci. Prot. Technol., 2016, 28: 525
10 李向红, 付惠, 李云仙等. 木薯淀粉接枝共聚物在HCl溶液中对Al的缓蚀性能研究 [J]. 腐蚀科学与防护技术, 2016, 28: 525
11 Li X H, Deng S D, Lin T, et al. Cassava starch-sodium allylsulfonate-acryl amide graft copolymer as an effective inhibitor of aluminum corrosion in HCl solution [J]. J. Taiwan Inst. Chem. Eng., 2018, 86: 252
12 Liu J, Zhao D S, Li J J, et al. Inhibition performance of Gemini surfactant for znic in acid medium [J]. Corros. Prot., 2016, 37: 983
12 刘静, 赵地顺, 李静静等. 酸性溶液中双子表面活性剂对金属锌的缓蚀性能 [J]. 腐蚀与防护, 2016, 37: 983
13 Jia Z, Dai C S, Chen L. Electrochemical Measurement Method [M]. Beijing: Chemical Industry Press, 2006
13 贾铮, 戴长松, 陈玲. 电化学测量方法 [M]. 北京: 化学工业出版社, 2006
14 Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
15 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemistry Industry Press, 2008
15 曹楚南. 腐蚀电化学原理 [M]. 第三版. 北京: 化学工业出版社, 2008
16 Negm N A, Al Sabagh A M, Migahed M A, et al. Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5 M HCl solution [J]. Corros. Sci., 2010, 52: 2122
17 Negm N A, Kandile N G, Badr E A, et al. Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl [J]. Corros. Sci., 2012, 65: 94
18 Poornima T, Nayak J, Shetty A N. Effect of 4- (N,N-diethylamino) benzaldehyde thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution [J]. Corros. Sci., 2011, 53: 3688
19 Lebrini M, Lagrenée M, Vezin H, et al. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds [J]. Corros. Sci., 2007, 49: 2254
20 Hanza A P, Naderi R, Kowsari E, et al. Corrosion behavior of mild steel in H2SO4 solution with 1,4-di [1′-methylene-3′-methyl imidazolium bromide]-benzene as an ionic liquid [J]. Corros. Sci., 2016, 107: 96
21 Musa A Y, Kadhum A A H, Mohamad A B, et al. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol [J]. Corros. Sci., 2010, 52: 526
22 Qiang Y J, Zhang S T, Guo L, et al. Sodium dodecyl benzene sulfonate as a sustainable inhibitor for zinc corrosion in 26%NH4Cl solution [J]. J. Clean. Prod., 2017, 152: 17
23 Wang X M, Yang H Y, Wang F H. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions [J]. Corros. Sci., 2010, 52: 1268
24 Hegazy M A, El-Tabei A S, Bedair A H, et al. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4 [J]. Corros. Sci., 2012, 54: 219
25 Ali S M, Al Lehaibi H A. Control of zinc corrosion in acidic media: Green fenugreek inhibitor [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3034
26 Satapathy A K, Gunasekaran G, Sahoo S C, et al. Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution [J]. Corros. Sci., 2009, 51: 2848
[1] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[2] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[3] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[4] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[5] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[6] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[7] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[8] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[9] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[10] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[11] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[12] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[13] 杨明馨, 高阳, 王辉. 添加Zn2+对ZIRLO合金在模拟压水堆一回路含LiOH和H3BO3水溶液工况下耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 199-204.
[14] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[15] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.