Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 133-139    DOI: 10.11902/1005.4537.2017.010
  研究报告 本期目录 | 过刊浏览 |
纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能
钱备1(), 刘成宝2, 宋祖伟1, 任俊锋1
1 青岛农业大学化学与药学院 青岛 266109
2 中国科学院宁波材料技术与工程研究所 宁波 315201
Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers
Bei QIAN1(), Chengbao LIU2, Zuwei SONG1, Junfeng REN1
1 College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
2 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
全文: PDF(3185 KB)   HTML
摘要: 

以纳米SiO2为载体,采用层层自组装技术在其表面交替沉积天然聚电解质壳聚糖和环保型缓蚀剂聚天冬氨酸,制备出纳米容器,将纳米容器分散到环氧涂层中获得改性环氧涂层。通过Zeta电位、扫描电子显微镜 (SEM) 和Fourier转换红外线光谱仪 (FT-IR) 对纳米容器进行了表征,利用电化学阻抗技术对比研究了普通环氧涂层与改性环氧涂层/Q235碳钢体系在3.5% (质量分数) NaCl溶液中的腐蚀行为。结果表明,纳米容器可以有效减缓海水在环氧涂层内部的扩散,提高环氧涂层的电阻,从而增大腐蚀反应阻力;改性后涂层的电化学阻抗在浸泡120 h后仍维持在105 Ω·cm2以上,耐蚀性显著增强。

关键词 纳米容器环氧涂层缓蚀剂防腐性能Q235碳钢    
Abstract

Nano-containers were synthesized via layer by layer (LbL) self-assembly technique with SiO2 as core and alternative layers of chitosan and polyaspartic acid inhibitor as shell. Then nano-containers modified epoxy coatings were prepared and applied on carbon steel Q235. The nano-containers were characterized by means of Malvern laser particle size analyzer, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). In addition, the electrochemical behavior of epoxy coatings/Q235 systems with and without nano-containers in 3.5% (mass fraction) NaCl solution were investigated through electrochemical impendence spectroscopy (EIS). Results indicated that the corrosion resistance of epoxy coatings had been greatly increased by the incorporating nano-containers, which can effectively reduce the diffusion of water in coating matrix and enhance the coating impedance for corrosion reaction. The impedance value of the modified epoxy coating may be maintained by above 105 Ω·cm2 even after 120 h immersion, revealing the enhanced anticorrosion performance.

Key wordsnanocontainer    epoxy coating    inhibitor    anticorrosion performance    Q235 mild steel
收稿日期: 2017-01-16     
基金资助:山东省自然科学基金 (ZR2017BD038) 和青岛农业大学高层次人才启动基金(6631115017)
作者简介:

作者简介 钱备,男,1985年生,博士

引用本文:

钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 133-139.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.010      或      https://www.jcscp.org/CN/Y2018/V38/I2/133

图1  纳米容器的Zeta电位
图2  纳米容器的红外谱图
图3  纳米容器的SEM像
图4  涂层/Q235钢体系 (S0, S1和 S2) 在3.5%NaCl溶液中浸泡不同时间后的表面光学照片
图5  带划痕S2和 S0涂层体系在3.5%NaCl溶液中浸泡1~5 h的电化学阻抗谱
图6  带划痕的涂层体系在3.5%NaCl溶液中浸泡1~5 h内的等效电路图
图7  带划痕的S2和S0涂层体系在3.5%NaCl溶液中浸泡24~120 h的电化学阻抗谱
图8  带划痕的涂层体系在3.5%NaCl溶液中浸泡24~120 h内的等效电路图
表1  S0和S2体系在海水中浸泡不同时间的电化学参数
[1] Zhang L, Li B S, Zhang W.Anticorrosion performance of epoxy coating containing polyaniline modified by montmorillonite in marine environment[J]. Corros. Prot., 2016, 37: 215(张磊, 李宝松, 张文. 海洋环境蒙脱土改性聚苯胺环氧涂层的防腐蚀性能[J]. 腐蚀与防护, 2016, 37: 215)
[2] Olad A, Naseri B.Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite[J]. Prog. Org. Coat., 2010, 67: 233
[3] Ge C Y, Yang X G, Hou B R.Synthesis of polyaniline nanofiber and anticorrosion property of polyaniline-epoxy composite coating for Q235 steel[J]. J. Coat. Technol. Res., 2012, 9(1): 59
[4] Liu Y W.Corrosion resistance of anticorrosive coatings of epoxy resin modified by nano SiO2-rare elements[J]. Corros. Prot., 2015, 36: 738(刘元伟. 纳米SiO2-稀土元素复合改性环氧树脂防腐蚀涂料的耐蚀性[J]. 腐蚀与防护, 2015, 36: 738)
[5] Li G L.Epoxy Resin and Epoxy Coating [M]. Beijing: Chemical Industry Press, 2003(李桂林. 环氧树脂与环氧涂料 [M]. 北京: 化学工业出版社, 2003)
[6] Song J J, Liu C W, Chen H J, et al.Study on modification of anti-corrosive epoxy powder coating[J]. Thermosetting Resin, 2007, 22(4): 24(宋加金, 刘长维, 陈红军等. 耐腐蚀环氧粉末涂料的改性研究[J]. 热固性树脂, 2007, 22(4): 24)
[7] Liu G Z, Yang Z S, Zhang Y, et al.Corrosion inhibition performance of imidazoline amide for carbon steel in HCl/NH4Cl-H2O and H2S/NH4HS-H2O solution[J]. Corros. Prot., 2016, 37: 189(刘公召, 杨振声, 张艳等. 咪唑啉酰胺在HCl/NH4Cl-H2O和H2S/NH4HS-H2O体系中对碳钢的缓蚀性能[J]. 腐蚀与防护, 2016, 37: 189)
[8] Xiang Y G, Cui Y S, Qiao K Q.Corrosion inhibition of A3 steel by lauryl dihydroxyethyl amine oxide in 0.5 molL-1 H2SO4 solution[J]. Corros. Prot., 2016, 37: 30(向云刚, 崔益顺, 谯康全. 十二烷基二羟乙基氧化胺在0.5 molL-1 H2SO4中对A3钢的缓蚀性能[J]. 腐蚀与防护, 2016, 37: 30)
[9] Yang P P, Gai S L, Lin J.Functionalized mesoporous silica materials for controlled drug delivery[J]. Chem. Soc. Rev., 2012, 41: 3679
[10] Sun J T, Hong C Y, Pan C Y.Fabrication of PDEAEMA-Coated mesoporous silica nanoparticles and pH-responsive controlled release[J]. J. Phys. Chem., 2010, 114C: 12481
[11] Slowing I I, Trewyn B G, Giri S, et al.Mesoporous silica nanoparticles for drug delivery and biosensing applications[J]. Adv. Funct. Mater., 2007, 17: 1225
[12] Haase M F, Grigoriev D O, M?hwald H, et al.Development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings[J]. Adv. Mater., 2012, 24: 2429
[13] Borisova D, M?hwald H, Shchukin D G.Mesoporous silica nanoparticles for active corrosion protection[J]. ACS Nano, 2011,5: 1939
[14] Saremi M, Yeganeh M.Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings[J]. Corros. Sci., 2014, 86: 159
[15] Klitzing R V.Internal structure of polyelectrolyte multilayer assemblies[J]. Phys. Chem. Chem. Phys., 2006, 8: 5012
[16] Iler R K.Multilayers of colloidal particles[J]. J. Colloid Interface Sci., 1966, 21: 569
[17] Gittins D I, Caruso F.Multilayered polymer nanocapsules derived from gold nanoparticle templates[J]. Adv. Mater., 2000, 12: 1947
[18] Antunes J C, Pereira C L, Molinos M, et al.Layer-by-layer self-assembly of chitosan and poly(γ-glutamic acid) into polyelectrolyte complexes[J]. Biomacromolecules, 2011, 12: 4183
[19] Liu Y H, Li C M, Gu N.The study of the performance of environmentally friendly corrosion inhibitor-polyaspartic acid on carbon steel in tap water[J]. Sichuan Environ., 2013, 32(4): 11(刘英华, 李春梅, 谷宁. 环境友好缓蚀剂聚天冬氨酸在自来水中对碳钢的缓蚀性能研究[J]. 四川环境, 2013, 32(4): 11)
[20] Xu Q J, Zhu L Y, Cao W M, et al.Inhibition action and adsorption behavior of environment-friendly inhibitor poly-aspartate on copper[J]. Acta Phys.-Chim. Sin., 2008, 24: 1724(徐群杰, 朱律均, 曹为民等. 绿色缓蚀剂聚天冬氨酸对铜的缓蚀性能与吸附行为[J]. 物理化学学报, 2008, 24: 1724)
[21] Qian B, Wang J, Zheng M, et al.Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4[J]. Corros. Sci., 2013, 75: 184
[22] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[23] Xie D M, Tong S P, Cao J L.Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013(谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[10] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[11] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[12] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[13] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[14] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[15] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.