Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 60-70    DOI: 10.11902/1005.4537.2020.015
  研究报告 本期目录 | 过刊浏览 |
硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响
白云龙1,2, 沈国良2, 覃清钰1, 韦博鑫1, 于长坤1, 许进1(), 孙成1
1.中国科学院金属研究所 辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站 沈阳 110016
2.沈阳工业大学石油化工学院 辽阳 110870
Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel
BAI Yunlong1,2, SHEN Guoliang2, QIN Qingyu1, WEI Boxin1, YU Changkun1, XU Jin1(), SUN Cheng1
1.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 110870, China
全文: PDF(22175 KB)   HTML
摘要: 

考察硫脲基咪唑啉季铵盐 (IM-S1) 缓蚀剂对X80管线钢在3种不同pH的模拟油田水溶液中的缓蚀性能。采用电化学极化曲线、电化学阻抗分析、SVET、表面形貌分析等方法,研究缓蚀剂在不同pH、不同温度的模拟油田水溶液对X80管线钢的缓蚀性能。极化曲线测试显示,pH7.2环境中的腐蚀电流密度最小,其次是pH10.5,在pH3.5环境中的腐蚀电流密度最大;并随温度升高,腐蚀电流密度均有所升高。电化学阻抗的测试表明,在pH7.2模拟溶液条件下,所显示的容抗弧直径最大,且拟合结果中Rct明显高于其他两种测试条件。SVET分析显示,在pH7.2的测试条件下,管线钢表面吸附成膜性要优于其他两种测试条件;且离子电流密度随时间呈下降趋势,说明缓蚀剂粒子更适宜在此pH值条件下吸附成膜。根据SEM分析,可以明显看出,IM-S1缓蚀剂在中性条件的缓蚀效果要优于pH3.5和pH10.5条件的缓蚀作用效果。IM-S1缓蚀剂更适宜在中性条件下使用,并且在中低温 (40~60 ℃) 条件下具有良好的缓蚀效果。该类缓蚀剂在中性溶液条件的吸附成膜性要优于酸性和碱性条件的成膜性,并且吸附成膜降低离子电流密度,从而有效降低腐蚀反应速率。

关键词 硫脲基咪唑啉季铵盐缓蚀剂模拟油田水溶液X80管线钢电化学SVET    
Abstract

The effect of the thiourea base imidazoline quaternary ammonium salt corrosion inhibitor on the corrosion performance of X80 pipeline steel in three simulated oil-field waters with different pH was assessed by means of polarization curve measurement, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET) as well as characterization of corrosion morphology and corrosion products. Polarization curve measurement showed that the corrosion current density was the lowest in the water of pH7.2, followed by pH10.5, while the corrosion current density was the highest in the water of pH3.5,and as the temperature increased, the corrosion current density also increased. The EIS results showed that the diameter of capacitive reactance arc was the largest in the water of pH7.2, accordingly, the Rct in the fitting result was significantly higher than those in the other two waters. The SVET analysis revealed that the adsorption film formation on the surface of pipeline steel in the water of pH7.2 was better than in the other two waters, while the ion current density decreased with time, indicating that the corrosion inhibitor molecule is more suitable for the case in the water of pH7.2. The film formation by adsorption reduces the ion current density, thereby effectively reduces the corrosion reaction rate. In conclusion, the corrosion inhibitor is much suitable for use in neutral waters and it has good corrosion inhibition effect in the temperature range of 40~60 ℃.

Key wordsIM-S1    corrosion inhibitor    simulated oil-field water    X80 pipeline steel    electrochemistry    SVET
收稿日期: 2020-01-15     
ZTFLH:  TQ252.3  
基金资助:国家自然科学基金(51771213)
通讯作者: 许进     E-mail: xujin@imr.ac.cn
Corresponding author: XU Jin     E-mail: xujin@imr.ac.cn
作者简介: 白云龙,男,1990年生,硕士

引用本文:

白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
Yunlong BAI, Guoliang SHEN, Qingyu QIN, Boxin WEI, Changkun YU, Jin XU, Cheng SUN. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 60-70.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.015      或      https://www.jcscp.org/CN/Y2021/V41/I1/60

图1  硫脲基咪唑啉季铵盐的红外光谱图
图2  IM-S1分子结构图
图3  不同pH值和温度条件下X80管线钢在有无缓蚀剂的模拟油田水溶液中的失重结果
图4  不同pH值条件下X80管线钢在模拟油田水溶液中的缓蚀效率
图5  不同pH条件下X80管线钢在有无缓蚀剂的模拟油田水溶液中的极化曲线
InhibitorTpHEcorrmVIcorrμA·cm-2βαmV·dec-1β?mV·dec-1η%
Blank253.5-701.69124.6387.50455.64---
7.2-708.0895.5085.63350.59---
10.5-715.3546.7791.69433.31---
403.5-703.83129.7259.69569.58---
7.2-752.6596.1693.41318.48---
10.5-747.6148.98104.83220.05---
603.5-705.60144.5498.41902.75---
7.2-757.23109.6440.13421.17---
10.5-733.6151.2852.08261.80---
80 mg/L253.5-611.4215.8547.841188.5987.3
7.2-671.762.3321.79182.0197.6
10.5-664.5120.1166.79691.2957.0
403.5-690.8322.9167.81274.6482.3
7.2-673.172.6951.25179.4497.2
10.5-685.6720.8959.29252.1357.3
603.5-732.4035.4854.52224.3175.5
7.2-663.614.8942.71253.7295.5
10.5-722.2522.3850.15186.9956.4
表1  不同pH条件下X80管线钢在有无缓蚀剂的模拟油田水溶液中极化曲线参数
图6  不同pH条件下X80管线钢在有无缓蚀剂的模拟油田水溶液中的Nyquist图
  图7等效电路图
Inhibitor

T

pH

Rs

Ω·cm2

CPEdl, Yo

S·sn·cm-2

n

Rct

Ω·cm2

η

%

Blank253.53.733.534×10-40.7723350.1---
7.26.651.506×10-40.8511412.4---
10.57.425.596×10-30.7686723.6---
403.53.315.878×10-40.6887134.5---
7.23.685.649×10-40.7662299.3---
10.55.322.44×10-30.6243604.6---
603.53.924.98×10-40.7303118.5---
7.23.645.475×10-40.7932257.0---
10.55.533.738×10-30.5908372.2---
80 mg/L253.511.786.006×10-40.8291264586.8
7.214.003.136×10-40.7605467091.2
10.514.041.553×10-30.6660185961.1
403.513.453.83×10-40.7210134390.0
7.217.013.141×10-40.7932447893.3
10.57.6593.979×10-30.6378133454.7
603.513.118.772×10-40.7998555.778.7
7.212.966.584×10-40.8127232288.9
10.59.2112.97×10-30.6461729.849.0
表2  不同pH条件下X80管线钢在有无缓蚀剂的模拟油田水溶液中的电化学阻抗谱拟合参数
图8  X80管线钢在模拟油田水溶液中的腐蚀产物形貌图
图9  X80管线钢在模拟油田水溶液中的清洗腐蚀产物后腐蚀表面形貌图
图10  X80管线钢没有添加缓蚀剂的25 ℃模拟油田水溶液中的SVET图像
InhibitorpH0 h1 h48 h
Blank3.57.816.443.85
80 mg/L2.021.990.96
Blank7.26.102.731.58
80 mg/L1.160.780.32
Blank10.59.303.682.89
80 mg/L4.124.012.25
表3  X80管线钢在油田模拟水溶液中的离子电流密度值 (mA·cm-2)
图11  X80管线钢在含有80 mg/L缓蚀剂的25 ℃模拟油田水溶液中的SVET图像
1 Zhang C. Discussion on how to improve oil and gas field recovery [J]. Chem. Enterp. Manag., 2016, (23): 199
1 张超. 如何提高油气田开发采收率的探讨 [J]. 化工管理, 2016, (23): 199
2 Tan Z G, Lu T, Liu Y X, et al. Technical ideas of recovery enhancement in the Sulige Gasfield during the 13th Five- Year Plan [J]. Nat. Gas Ind., 2016, 36(3): 30
2 谭中国, 卢涛, 刘艳侠等. 苏里格气田“十三五”期间提高采收率技术思路 [J]. 天然气工业, 2016, 36(3): 30
3 Chen G, Shi H J. Factor analysis on equipment and pipeline corrosion of gas gathering stations in Puguang gas field [J]. Oil-Gasfield Surf. Eng., 2017, 36(4): 90
3 陈广, 石海军. 普光气田集气站场设备管线腐蚀因素解析 [J]. 油气田地面工程, 2017, 36(4): 90
4 Mei P, Ai J Z, Chen W, et al. Corrosion inhibitor resistant to carbon dioxide and its inhibiting mechanism [J]. Acta Petrol. Sin., 2004, 25(5): 104
4 梅平, 艾俊哲, 陈武等. 抑制二氧化碳腐蚀的缓蚀剂及其缓蚀机理研究 [J]. 石油学报, 2004, 25(5): 104
5 Zhou H L, Cao H X. Research on tube corrosion of natural gases [J]. Inner Mongolia Petrochem. Ind., 2009, (13): 5
5 周虹伶, 曹辉祥. 天然气管道腐蚀研究 [J]. 内蒙古石油化工, 2009, (13): 5
6 Javidi M, Khodaparast M. Inhibitive performance of monoethylene glycol on CO2 corrosion of API 5L X52 steel [J]. J. Mater. Eng. Perform., 2015, 24: 1417
7 Zhang G A, Cheng Y F. Corrosion of X65 steel in CO2-saturated oilfield formation water in the absence and presence of acetic acid [J]. Corros. Sci., 2009, 51: 1589
8 Sığırcık G, Yildirim D, Tüken T. Synthesis and inhibitory effect of N, N'-bis (1-phenylethanol) ethylenediamine against steel corrosion in HCl Media [J]. Corros. Sci., 2017, 120: 184
9 Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions V. The inhibition characteristics of imidazoline derivatives in H2S solutions [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 321
9 杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究V. 咪唑啉衍生物在H2S溶液中的缓蚀作用特征 [J]. 中国腐蚀与防护学报, 2001, 21: 321
10 Khodyrev Y P, Batyeva E S, Badeeva E K, et al. The inhibition action of ammonium salts of O,O′-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel [J]. Corros. Sci., 2011, 53: 976
11 Yu J H, Peng Q. Present situation of imidazoline pickling inhibitors [J]. Corros. Prot., 2003, 24: 473
11 于建辉, 彭乔. 咪唑啉型酸洗缓蚀剂的研究现状 [J]. 腐蚀与防护, 2003, 24: 473
12 Heydari M, Javidi M. Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions [J]. Corros. Sci., 2012, 61: 148
13 Zhang K G, Xu B, Yang W Z, et al. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2015, 90: 284
14 Zhang G A, Chen C F, Lu M X, et al. Evaluation of inhibition efficiency of an imidazoline derivative in CO2 containing aqueous solution [J]. Mater. Chem. Phys., 2007, 105: 331
15 Du M, Wang B, Zhang J, et al. Effect of temperature on the corrosion inhibition of a novel imidazoline inhibitor for carbon dioxide [J]. Mater. Prot., 2010, 43(9): 20
15 杜敏, 王彬, 张静等. 温度对新型咪唑啉抑制CO2腐蚀的影响 [J]. 材料保护, 2010, 43(9): 20
16 Trethewey K R, Sargeant D A, Marsh D J, et al. Applications of the scanning reference electrode technique to localized corrosion [J]. Corros. Sci., 1993, 35: 127
17 Wang L W, Du C W, Liu Z Y, et al. SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution [J]. Corros. Prot., 2012, 33: 935
17 王力伟, 杜翠薇, 刘智勇等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究 [J]. 腐蚀与防护, 2012, 33: 935
18 Tie Z W, Wei Z L, Zhao J M. Hydrolysis of an imidazoline corrosion inhibitor under different conditions [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2017, 44(5): 66
18 铁志伟, 魏振禄, 赵景茂. 咪唑啉类缓蚀剂在不同条件下的水解研究 [J]. 北京化工大学学报 (自然科学版), 2017, 44(5): 66
19 Schultze J W. Electrochemical materials science: An introduction to Symposium 4 of the 50th Anniversary of ISE ‘Electrochemistry and Materials: Synthesis and Characterization’ [J]. Electrochim. Acta, 2000, 45: 3193
20 Wang J, Cao C N, Chen J J, et al. Anodic desorption of inhibitors: Ⅰ. The phenomenon of anodic desorption of inhibitors [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 241
20 王佳, 曹楚南, 陈家坚等. 缓蚀剂阳极脱附现象的研究: I. 缓蚀剂阳极脱附现象 [J]. 中国腐蚀与防护学报, 1995, 15: 241
21 Chinese Society for Corrosion and Protection. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994
21 中国腐蚀与防护学会. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994
22 Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions Ⅵ. The relationship between molecular structure of imidazoline derivatives and inhibition performance in H2S solutions [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 148
22 杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究 Ⅵ. H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系 [J]. 中国腐蚀与防护学报, 2002, 22: 148
23 Zhang W W, Ma R, Liu H H, et al. Electrochemical and surface analysis studies of 2-(quinolin-2-yl) quinazolin-4 (3H)-one as corrosion inhibitor for Q235 steel in hydrochloric acid [J]. J. Mol. Liq., 2016, 222: 671
24 Hong T, Sun Y H, Jepson W P. Study on corrosion inhibitor in large pipelines under multiphase flow using EIS [J]. Corros. Sci., 2002, 44: 101
[1] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[2] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[3] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[4] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[5] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[6] 王丽姿, 黄苗, 李向红. 核桃青皮提取物与碘化钾对钢在柠檬酸中的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[7] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[8] 王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[9] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[10] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[11] 王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
[12] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[13] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[14] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[15] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.