Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (3): 303-308    DOI: 10.11902/1005.4537.2017.098
  研究报告 本期目录 | 过刊浏览 |
生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理
彭晚军1,2, 丁纪恒1, 陈浩1,3, 余海斌1()
1 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室 宁波 315201
2 湖南大学材料科学与工程学院 长沙 410006
3 宁波大学材料科学与化学工程学院 宁波 315201
Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether
Wanjun PENG1,2, Jiheng DING1, Hao CHEN1,3, Haibin YU1()
1 Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Key Laboratory of Marine New Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410006, China
3 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, China
全文: PDF(1476 KB)   HTML
摘要: 

在生物基呋喃类缓蚀剂的研究基础上,利用Tafel极化曲线和电化学阻抗技术 (EIS) 研究了Q235碳钢在不同浓度的糠醇缩水甘油醚 (FGE) 盐酸溶液中的腐蚀行为,并通过静态失重实验分析了Q235碳钢在不同体系中的腐蚀速率。结果表明,4.92×10-4 molL-1的FGE对Q235碳钢具有最好的缓蚀效果,其缓蚀效率达到94.0%,腐蚀速率为0.076 mgcm-2h-1。此外,经证明FGE在Q235碳钢表面的吸附过程符合Langmuir吸附模型,同时发生物理吸附和化学吸附。

关键词 生物基呋喃类缓蚀剂FGEQ235碳钢Langmuir吸附模型    
Abstract

On the basis of previous studies on bio-based furan inhibitors, the corrosion behavior of Q235 carbon steel in different concentration of hydrochloric acid solutions with FGE was studied by means of corrosion weight-loss measurement, Tafel polarization curve measurement and electrochemical impedance spectroscopy (EIS). Results show that when the concentration of FGE is 4.92×10-4 molL-1, the inhibition effect for Q235 carbon steel achieves the optimum with the inhibition efficiency of more than 94.0% and the corrosion rate of 0.076 mgcm-2h-1. In addition, it is proved that the adsorption process of FGE on Q235 carbon steel is in accord with the Langmuir adsorption model, which is the result of the interaction of physical adsorption and chemical adsorption.

Key wordsBio-based    Furan inhibitor    FGE    Q235 carbon steel    Langmuir adsorption model
收稿日期: 2017-06-28     
ZTFLH:  TG174.4  
基金资助:中国博士后科学基金 (2015A610048)
作者简介:

作者简介 彭晚军,男,1993年生,硕士生

引用本文:

彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether. Journal of Chinese Society for Corrosion and protection, 2018, 38(3): 303-308.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.098      或      https://www.jcscp.org/CN/Y2018/V38/I3/303

图1  电化学工作站三电极实验系统
图2  Q235碳钢在含不同浓度FGE缓蚀剂的0.5 mol/L盐酸溶液中浸泡3 h的极化曲线
FGE mol·L-1 -EcorrmV βaV·dec-1 -βcV·dec-1 IcorrμA·cm-2 RpΩ·cm-2
0 543 12.46 10.13 112.40 171
1.64×10-4 536 10.56 7.18 26.43 927
3.28×10-4 553 6.78 4.30 16.98 2312
4.92×10-4 564 7.80 5.04 11.74 2883
6.56×10-4 545 8.12 4.99 19.83 1672
表1  极化曲线拟合后的电化学参数
图3  Q235碳钢在含不同浓度FGE的0.5 mol/L盐酸溶液中浸泡3 h的电化学阻抗谱和等效电路图
FGEmol·L-1 RsΩ·cm2 QdlμF·cm2·Hz1-n n RctΩ·cm2 PE%
0 3.27 1.45×10-4 0.81 1.33×102 ---
1.64×10-4 4.71 4.20×10-5 0.76 9.26×102 81.6
3.28×10-4 5.13 3.20×10-5 0.60 1.84×103 92.7
4.92×10-4 3.35 1.50×10-5 0.63 2.22×103 94.0
6.56×10-4 3.34 3.40×10-5 0.72 1.57×103 91.5
表2  EIS拟合后的电化学参数
FGE / mol·L-1 V / mg·cm-2·h-1 θ CR / %
0 1.164 --- ---
1.64×10-4 0.201 0.827 82.7
3.28×10-4 0.076 0.935 93.5
4.92×10-4 0.043 0.963 96.3
6.56×10-4 0.093 0.920 92.0
表3  Q235碳钢在含不同浓度FGE的0.5 mol/L盐酸溶液中的失重实验结果
图4  Q235碳钢在含4.92×10-4 mol/L的FGE和空白盐酸溶液中浸泡3 h后的SEM像
C / molL-1 Kads / L·mol-1 ΔG 0ads / kJ·mol-1
0 --- ---
1.64×10-4 2.91×104 -3.54×104
3.28×10-4 4.39×104 -3.64×104
4.92×10-4 5.29×104 -3.69×104
6.56×10-4 1.75×104 -2.82×104
表4  FGE在碳钢表面的吸附参数
图5  FGE的Langmuir吸附等温线和FGE在碳钢表面的吸附机理示意图
[1] Zuo X, Jiang Y F, Chi T, et al.Synthesis and performance of new benzotriazole derivatives with long alkyl chain as corrosion inhibitors[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 415(左翔, 蒋裕丰, 迟挺等. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36: 415)
[2] Wang C X, Chen J P, Zhang X H, et al.Corrosion inhibition of octyl isoquinolinium bromide on Q235 carbon steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 245(王春霞, 陈敬平, 张晓红等. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 245)
[3] Chidiebere M A, Oguzie E E, Liu L, et al.Corrosion inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives[J]. Ind. Eng. Chem. Res., 2014, 53: 7670
[4] Flores E A, Olivares O, Likhanova N V, et al.Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution[J]. Corros. Sci., 2011, 53: 3899
[5] Hegazy M A, El-Tabei A S, Bedair A H, et al. An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5 M H2SO4[J]. Corros. Sci., 2012, 54: 219
[6] Nam N D, Thang V Q, Hoai N T, et al.Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution[J]. Corros. Sci., 2016, 112: 451
[7] Zhang J, Gong X L, Yu H H, et al.The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium[J]. Corros. Sci., 2011, 53: 3324
[8] De Souza F S, Spinelli A. Caffeic acid as a green corrosion inhibitor for mild steel[J]. Corros. Sci., 2009, 51: 642
[9] Hu J Y, Zeng D Z, Zhang Z, et al.2-Hydroxy-4-methoxy-acetophenone as an environment-friendly corrosion inhibitor for AZ91D magnesium alloy[J]. Corros. Sci., 2013, 74: 35
[10] Wang H Y, Wei Y H, Du H Y, et al.Corrosion inhibition and adsorption behavior of green corrosion inhibitor SDDTC on AZ31B Mg-alloy[J]. J. Chin. Soc. Corros. Prot., 2018, 38: 62(王海媛, 卫英慧, 杜华云等. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38: 62)
[11] Vishwanatham S, Haldar N.Furfuryl alcohol as corrosion inhibitor for N80 steel in hydrochloric acid[J]. Corros. Sci., 2008, 50: 2999
[12] Zhang B R, Zhang L, Li F T, et al.Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water[J]. Corros. Sci., 2010, 52: 3883
[13] Chen W, Wang C P, Chen C M, et al.Corrosion inhibition of equisetum ramosissimum extractive for carbon steel in hydrochloric acid solution[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 177(陈文, 管春平, 杨申明等. 节节草提取物在盐酸介质中对碳钢的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 177)
[14] Li B L.Furan Derivatives: An emerging class of organic semiconductors[J]. Chin. J. Org. Chem., 2015, 35: 2487(李保林. 呋喃衍生物: 一类新兴的有机半导体材料[J]. 有机化学, 2015, 35: 2487)
[15] Chen X X, Dam M A, Ono K, et al.A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295: 1698
[16] Karami Z, Zohuriaan-Mehr M J, Rostami A. Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart[J]. J. CO2 Util., 2017, 18: 294
[17] Elschner T, Obst F, Stana-Kleinschek K, et al.Synthesis and film formation of furfuryl- and maleimido carbonic acid derivatives of dextran[J]. Carbohydr. Polym., 2017, 161: 1
[18] France S C D. Bulletin de la Société chimique de France. Sér. 5, Mémoires [M]. Paris: Nabu Press, 1946
[19] Yan X C, Zhao H, Luo M D, et al.Quantum chemistry study on inhibition mechanism of furan and its derivatives for aluminium[J]. J. Chin. Soc. Corros. Prot., 1999, 19: 372(颜肖慈, 赵红, 罗明道等. 呋喃及其衍生物对铝缓蚀机理的量子化学研究[J]. 中国腐蚀与防护学报, 1999, 19: 372)
[20] Ding J H, Peng W J, Luo T, et al.Study on the curing reaction kinetics of a novel epoxy system[J]. RSC Adv., 2017, 7: 6981
[21] Zhang H H, Xie Y, Yang Z N.Corrosion inhibition of 2-hydroxy-4-methoxy benzaldehydethiosemicarbazone for mild steel[J]. Appl. Chem. Ind., 2014, 43: 1973(张红红, 谢彦, 杨仲年. 2-羟基-4-甲氧基苯甲醛缩氨基硫脲对碳钢的缓蚀作用[J]. 应用化工, 2014, 43: 1973)
[22] Zhao H R, Su S P, Yu H B.Corrosion inhibition performance of aniline trimer for carbon steel in HCl solution[J]. Mater. Prot., 2016, 49(11): 13(赵红冉, 苏胜培, 余海斌. 苯胺三聚体对碳钢在盐酸溶液中的缓蚀性能[J]. 材料保护, 2016, 49(11): 13)
[23] Shivakumar S S, Mohana K N.Centella asiatica extracts as green corrosion inhibitor for mild steel in 0.5 M sulphuric acid medium[J]. Adv. Appl. Sci. Res., 2012, 3: 3097
[1] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[2] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[3] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[4] 刘宏伟,熊福平,吕亚林,葛承宣,刘宏芳,胡裕龙. 动态条件下十二胺对Q235碳钢CO2腐蚀的缓蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[5] 肖涛,Masoumeh Moradi,宋振纶,杨丽景,闫涛,侯利锋. 新喀里多尼亚弧菌胞外聚合物对硫酸中Q235碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2016, 36(2): 150-156.
[6] 汪江伟,张杰,陈守刚,段继周,侯保荣. 钙质层对Q235碳钢在含双眉藻f/2培养基中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 535-542.
[7] 吴军, 王秀静, 罗睿, 张三平, 周建龙. 环境变迁对Q235和09CuPCrNi-A钢早期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.