Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 393-399    DOI: 10.11902/1005.4537.2014.196
  本期目录 | 过刊浏览 |
油田输油管线钢X65的腐蚀行为研究
刘栓1,2,赵霞1(),陈长伟1,侯保荣1,陈建敏2
2. 中国科学院宁波材料技术与工程研究所 海洋新材料与应用技术重点实验室 宁波 315201
Corrosion Behavior of Pipeline Steel X65 in Oilfield
Shuan LIU1,2,Xia ZHAO1(),Changwei CHEN1,Baorong HOU1,Jianmin CHEN2
1. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. Key Laboratory of Marine Materials and Related Ningbo Technologies, Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(3032 KB)   HTML
  
摘要: 

研究了胜利埕岛油田用X65管线钢的管内腐蚀和管外腐蚀行为。通过失重法和电化学测试手段研究了油田中油水混合物流速和油含量对X65钢输油管线钢管内腐蚀行为的影响规律。采用动电位极化曲线和电化学阻抗谱研究了X65钢在土壤渗出液中的管外腐蚀行为,并结合X射线衍射技术 (XRD) 和扫描电镜 (SEM) 技术对X65钢腐蚀产物的晶型和形貌进行了分析。结果表明:X65钢的腐蚀速率随油水混合物流速的增加而增大,当油含量为5% (质量分数) 时,其腐蚀速率最大;X65钢在土壤渗出液中的自腐蚀电流密度随浸泡时间的延长而增大,表面生成的疏松腐蚀产物膜会加速阴极去极化反应。

关键词 X65管线钢腐蚀行为土壤渗出液流速油含量    
Abstract

The inner- and outer-surface corrosion behavior of X65 pipeline steel used in Shengli Chengdao oilfield was studied in this paper. The inner surface corrosion behavior of X65 pipeline steel in oil-water mixtures with different flow rate and oil content was examined by means of mass loss method and electrochemical technique. The corrosion resistance of the outer surface of X65 pipeline steel in soil extracts was also examined by means of polarization curves and electrochemical impedance spectroscopy (EIS). The phase constituents and surface morphology of corrosion products were characterized by using X-ray diffraction techniques (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that the corrosion rate of X65 steel increased with the increasing flow rate of oil-water mixture, which could reach the maximum value when the oil content was 0.5% (mass fraction). The corrosion current density of X65 steel increased with immersion time in soil extracts. A loose corrosion product film formed on the steel surface, which can accelerate the cathodic depolarization reaction.

Key wordsX65 pipeline steel    corrosion behavior    soil extract    velocity    oil content
    
ZTFLH:     
基金资助:国家科技支撑重点项目 (2012BAB15B01) 和中国科学院海洋新材料与应用技术重点实验开放基金项目 (LMMT-KFKT-2014-008) 资助

引用本文:

刘栓, 赵霞, 陈长伟, 侯保荣, 陈建敏. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
Shuan LIU, Xia ZHAO, Changwei CHEN, Baorong HOU, Jianmin CHEN. Corrosion Behavior of Pipeline Steel X65 in Oilfield. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 393-399.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.196      或      https://www.jcscp.org/CN/Y2015/V35/I5/393

图1  腐蚀实验装置图
图2  不同油含量和流速对X65钢腐蚀速率的影响
图3  不同油相质量分数的乳状液在X65钢表面的吸附形貌
图4  X65钢在不同油含量溶液中浸泡2 d后的Tafel极化曲线
图5  X65钢在土壤浸出液中浸泡不同时间的EIS谱
图6  X65钢在土壤浸出液中浸泡不同时间的等效电路图
Time / d Rs / Ωcm2 Qf / μFcm-2 n1 Rf / Ωcm2 Qdl / μFcm-2 n2 Rct / Ωcm2
1 1.01 --- --- --- 501.2 0.84 1943.8
3 1.45 --- --- --- 421.5 0.87 1627.2
7 1.62 --- --- --- 351.2 0.84 1214.3
10 1.36 --- --- --- 346.2 0.86 1108.4
14 1.91 6.91 0.83 17.2 127.1 0.76 1026.1
21 1.49 3.22 0.96 35.2 114.1 0.97 923.2
24 1.56 5.65 0.84 64.5 105.5 0.84 856.3
28 1.05 2.88 0.96 85.8 258.3 0.93 693.6
表1  X65钢在土壤浸出液中浸泡不同时间的EIS拟合数据
图7  X65钢在土壤浸出液中浸泡不同时间的Tafel极化曲线
Time d Ecorr V (vs SCE) Icorr μAcm-2 βc mVdec-1 βa mVdec-1
2 -0.725 8.65 -331.9 68.3
7 -0.732 11.50 -281.3 74.9
14 -0.796 39.30 -151.7 83.7
28 -0.813 76.30 -96.8 95.4
表2  X65钢在土壤浸出液中浸泡不同时间的Tafel拟合数据
图8  X65钢在土壤浸出液中浸泡不同时间的XRD谱
图9  X65钢在土壤浸出液中浸泡不同时间表面形貌的SEM像
[1] Sun J F. Corrosion mechanism for water injection system of Chengdao offshore oilfield[J]. J. Chin. Univ. Pet.(Nat. Sci.), 2012, 36(3):180 (孙建芳. 胜利海上埕岛油田注水系统腐蚀机制[J]. 中国石油大学学报 (自然科学版), 2012, 36(3): 180)
[2] Luo Y B, Lv C Y. Offshore oil exploration and development status and prospect of Shandong Shengli oil field[J]. Coastal Eng., 2001, 20(3): 4 (罗玉斌, 吕春宇. 山东胜利油田海洋石油勘探开发现状及前景分析[J]. 海岸工程, 2001, 20(3): 4)
[3] Sun C, Sun J B, Wang Y, et al. Corrosion mechanism of OCTG carbon steel in supercritical CO2/oil/water system[J]. Acta Metall. Sin.
null 2014, 50(7): 811 (孙冲, 孙建波, 王勇等. 超临界CO2/油/水系统中油气管材钢的腐蚀机制[J]. 金属学报, 2014, 50(7): 811)
[4] Aprael S Y, Khalid R A, Anees A K. Effect of CO2 corrosion behavior of mild steel in oilfield produced water[J]. J. Loss Prevent. Proc. Ind., 2015, 38: 24
[5] Zhang G A, Cheng Y F. Electrochemical corrosion of X65 pipe steel in oil/water emulsion[J]. Corros.?Sci., 2009, 51: 901
[6] Zhang Y L. Corrosion Behavior of X65 Carbon Steel and 316L Stai-nless Steel in Oilfield Produced Water [D]. Qingdao: Ocean University of China, 2014 (张艳丽. X65碳钢和316L不锈钢在模拟油田采出水中的腐蚀行为研究 [D]. 青岛: 中国海洋大学, 2014)
[7] Shi L H, Wang C Q, Zou C J. Corrosion failure analysis of L485 natural gas pipeline in CO2 environment[J]. Eng. Fail. Anal., 2014, 36: 372
[8] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines[J]. Int. J. Greenh. Gas Con., 2013, 17: 534
[9] Liu S, Zhao X R, Sun H Y, et al. The degradation of tetracycline in a photoelectro-fenton system[J]. Chem. Eng. J., 2013, 231: 441
[10] Liu S, David M J, Huang Y P, et al. Degradation of organic pollutants by a Co3O4-graphite composite electrode in an electro-Fenton-like system[J]. Chin. Sci. Bull., 2013, 58: 2340
[11] Liu S, Sun H Y, Sun L J. Effects of the pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rusty layer solution[J]. J. Funct. Mater., 2013, 44(6): 858 (刘栓, 孙虎元, 孙立娟. pH值和温度对镀锌钢在模拟锈层溶液中电化学腐蚀行为的影响[J]. 功能材料, 2013, 44(6): 858)
[12] Liu S, Sun H Y, Sun L J, et al. Effects of pH and Cl- concentration on corrosion behavior of the galvanized steel in simulated rust layer solution[J]. Corros.?Sci., 2012, 65: 520
[13] Liu S, Sun H Y, Sun L J, et al. Effects of Zn(OH)2 on corrosion behavior of galvanized steel in seawater[J]. J. Mater. Eng., 2013, (8): 60 (刘栓, 孙虎元, 孙立娟等. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60)
[14] Sun H Y, Liu S, Sun L J. A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5wt%NaCl[J]. Int. J. Electrochem. Sci., 2013, 8: 3494
[15] Liu S, Sun H Y, Zhang N, et al. The corrosion performance of galvanized steel in closed rusty seawater[J]. Int. J. Corros., 2013, (2013): 1
[1] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] 戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[4] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[5] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[9] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.