Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 244-250    DOI: 10.11902/1005.4537.2019.037
  研究报告 本期目录 | 过刊浏览 |
乌洛托品季铵盐缓蚀剂的合成与复配研究
邵明鲁1(), 刘德新2, 朱彤宇2, 廖碧朝3
1 中国石油大学 油气资源与探测国家重点实验室 石油工程教育部重点实验室 北京 102249
2 中国石油大学 (华东) 石油工程学院 青岛 266580
3 中石化中原石油工程公司井下特种作业公司压裂工程部 濮阳 457164
Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor
SHAO Minglu1(), LIU Dexin2, ZHU Tongyu2, LIAO Bichao3
1 State Key Laboratory of Petroleum Resources and Prospecting, Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum, Beijing 102249, China
2 School of Petroleum Engineering in China University of Petroleum (East China), Qingdao 266580, China
3 Department of Fracturing Engineering, Zhongyuan Petroleum Engineering Company of Sinopec Group, Puyang 457164, China
全文: PDF(1784 KB)   HTML
摘要: 

以乌洛托品、溴己烷为主要原料,甲醇为溶剂,合成了一种乌洛托品季铵盐缓蚀剂,采用失重法研究了季铵盐缓蚀剂在15% (质量分数) HCl溶液中的缓蚀性能及复配性能,并采用量子化学计算对缓蚀剂机理进行分析,通过红外光谱、SEM对腐蚀后表面进行分析。结果表明,季铵盐缓蚀剂具有良好的缓蚀性能,在15%HCl、90 ℃下,加量0.5% (质量分数) 时,缓蚀率达98.41%,并且与聚乙二醇、KI、丙炔醇复配后协同增效效果较好;量子化学计算表明该季铵盐缓蚀剂分子活性主要分布在分子环上,与乌洛托品相比具有更小的能隙,在Fe表面也具有更大吸附能,因此乌洛托品季铵盐活性更高。表面分析实验进一步验证了该缓蚀剂分子在QT-800钢片表面形成一层吸附膜。

关键词 合成乌洛托品缓蚀剂复配量子化学计算    
Abstract

A new type of urotropine quaternary ammonium salt as corrosion inhibitor was synthesized through nucleophilic reaction with urotropine and bromohexane as raw materials, while methanol as solvent. Then, the corrosion inhibition effect of quaternary ammonium salt for QT-800 steel in 15% (mass fraction) HCl solution was assessed by mass loss measurements, IR spectrometer and SEM. The mechanism of corrosion inhibition was studied by quantum chemical density functional theory. The results indicated that the quaternary ammonium salt has good corrosion inhibition performance, when urotropine quaternary ammonium salt of 0.5% (mass fraction) was added into 15%HCl solution at 90 ℃, the inhibition efficiency for QT-800 steel could reach up to 98.41%. The complexes of the urotropine quaternary ammonium salt with polyethylene glycol, potassium iodide and propynol were prepared respectively, and they all showed good performance in corrosion inhibition. Quantum chemical parameters indicates that the chemical activity of the urotropine quaternary ammonium salt is mainly distributed on the molecular ring, which has a smaller energy gap than the urotropine, and a larger adsorption energy on the iron surface. Therefore, the reactivity of urotropine quaternary ammonium salt is higher than that of urotropine. The results of IR spectrum and SEM analysis reveal that the urotropine quaternary ammonium salt molecules could adsorb on the surface of QT-800 steel during the corrosion test in HCl solution.

Key wordssynthesis    urotropine    corrosion inhibitor    complex    quantum chemical calculation
收稿日期: 2019-03-19     
ZTFLH:  TG174.42  
通讯作者: 邵明鲁     E-mail: minglushao@163.com
Corresponding author: SHAO Minglu     E-mail: minglushao@163.com
作者简介: 邵明鲁,男,1991年生,博士生

引用本文:

邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
Minglu SHAO, Dexin LIU, Tongyu ZHU, Bichao LIAO. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 244-250.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.037      或      https://www.jcscp.org/CN/Y2020/V40/I3/244

Inhibitor dosage / %Urotropine quaternary ammonium saltUrotropine
Corrosion rate g·m-2·h-1, 60 ℃Corrosion rate g·m-2·h-1, 90 ℃Corrosion rate g·m-2·h-1, 60 ℃Corrosion rate g·m-2·h-1, 90 ℃
058.9210236.334658.9210236.3346
0.13.88976.025313.5422112.3919
0.32.53025.356112.2449106.7348
0.51.61183.760610.380498.1144
0.71.07543.68429.445185.9134
1.01.00452.99559.341367.4380
表1  缓蚀剂加量对缓蚀性能的影响
图1  表面活性剂加量与腐蚀速率的关系
图2  增效剂加量与腐蚀速率的关系
Serial numberPolyethylene glycol / %KI %Propynol %Corrosion rate g·m-2·h-1
10.0060.10.11.0702
20.0060.150.150.9963
30.0060.20.20.7223
40.0080.10.150.8044
50.0080.150.20.6703
60.0080.20.10.9373
70.010.10.20.7079
80.010.150.10.9565
90.010.20.150.8401
表2  正交试验结果与分析
图3  最高占有轨道及最低空轨道的0.03 a.u.等值面图形
图4  分子动力学模拟中缓蚀剂分子在Fe表面达到平衡的状态图
图5  腐蚀后钢片表面与乌洛托品、溴己烷的红外谱图
图6  QT-800钢片在有、无缓蚀剂的15%HCl溶液中腐蚀4 h后的表面形貌
[1] He X K, Chen B Z, Zhang Q F. Present development and prospect of inhibitor [J]. Mater. Prot., 2003, 36(8): 1
[1] (何新快, 陈白珍, 张钦发. 缓蚀剂的研究现状与展望 [J]. 材料保护, 2003, 36(8): 1)
[2] Li Y T, Wang L Y, Shi D Q, et al. Research progress of imidazoline corrosion inhibitors used in oilfields [J]. Mater. Prot., 2011, 44(12): 50
[2] (李言涛, 王路遥, 史德青等. 油气田用咪唑啉缓蚀剂的研究进展 [J]. 材料保护, 2011, 44(12): 50)
[3] Li Y T, Hou B R. Progress on natural environmental friendly corrosion inhibitors for metals [J]. Corros. Sci. Prot. Technol., 2006, 18: 37
[3] (李言涛, 侯保荣. 天然环保型缓蚀剂近期研究进展 [J]. 腐蚀科学与防护技术, 2006, 18: 37)
[4] Du H Y, Lu M X, Wu Y S, et al. Study of inhibition mechanism of stearamide derivative on CO2 corroded steel X65 [J]. Acta Metall. Sin., 2006, 42: 533
[4] (杜海燕, 路民旭, 吴荫顺等. 脂肪酰胺类缓蚀剂对X65钢抗CO2腐蚀的机理研究 [J]. 金属学报, 2006, 42: 533)
[5] Wang J, Wang X, Zhong Z G, et al. Preparation and property of inhibitor WX1A used for high-density and solid-free well killing fluid [J]. Oilfield Chem., 2016, 33: 407
[5] (王健, 王煦, 钟志刚等. 适用于酸性高密度压井液的缓蚀剂WX1A的制备与性能研究 [J]. 油田化学, 2016, 33: 407)
[6] Li K H, Wu L L. Synthesis of XJ mannich base inhibitor and research of N80 steel corrosion performance [J]. Oilfield Chem., 2013, 30: 434
[6] (李克华, 吴兰兰. 曼尼希碱缓蚀剂XJ合成及其对N80钢的缓蚀性能 [J]. 油田化学, 2013, 30: 434)
[7] Chen D J, Li X K, Xiong Y, et al. Study on anti-H2S thioureido imidazoline corrosion inhibitor [J]. Oilfield Chem., 2014, 31: 107
[7] (陈大钧, 李小可, 熊颖等. 防H2S腐蚀的硫脲基咪唑啉缓蚀剂研究 [J]. 油田化学, 2014, 31: 107)
[8] Zheng Y X, Wang X P, Yan Y F, et al. Synthesis and property evaluation of quinoline diquaternary ammonium salt as acidification corrosion inhibitor [J]. Corros. Prot., 2015, 36: 14
[8] (郑云香, 王向鹏, 燕玉峰等. 喹啉型双季铵盐酸化缓蚀剂的合成与性能评价 [J]. 腐蚀与防护, 2015, 36: 14)
[9] Zhou F, Dai Q Q. Research on synthesis and preparation of imidazolium quaternary corrosion inhibitor for acidification [J]. Adv. Fine Petrochem., 2016, 17(4): 27
[9] (周飞, 戴倩倩. 酸化用咪唑啉季铵盐缓蚀剂的合成与复配研究 [J]. 精细石油化工进展, 2016, 17(4): 27)
[10] Liu F G, Du M. Effect of new type compound inhibitor on inhibition behavior of steel G105 in NaCl solution [J]. Acta Metall. Sin., 2007, 43: 989
[10] (刘福国, 杜敏. 新型复配缓蚀剂对G105钢在NaCl溶液中缓蚀行为的影响 [J]. 金属学报, 2007, 43: 989)
[11] Zhang J, Du M, Yu H H, et al. Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films formed on Q235 steel [J]. Acta Phys.-Chim. Sin., 2009, 25: 525
[11] (张静, 杜敏, 于会华等. 分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响 [J]. 物理化学学报, 2009, 25: 525)
[12] Dong M, Liu L W, Liu Y X, et al. Correlation between molecular structures of inhibitors and their performance in high temperature and high pressure H2S/CO2 environments [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 157
[12] (董猛, 刘烈炜, 刘月学等. 高温高压H2S/CO2环境缓蚀剂分子结构与缓蚀性能关系的研究 [J]. 中国腐蚀与防护学报, 2012, 32: 157)
[13] Wang Y, Hu J, Wang Y Q, et al. A new method for preventing corrosion failure: Thiourea and hexamethylenetetramine as inhibitor for copper [J]. Bull. Korean Chem. Soc., 2016, 37: 1797
doi: 10.1002/bkcs.10978
[14] Gao J L. Urotropine as a corrosion inhibitor in hydrochloric acid solution [J]. Corros. Prot., 2009, 30: 182
[14] (高军林. 乌洛托品作为酸洗缓蚀剂的探讨 [J]. 腐蚀与防护, 2009, 30: 182)
[15] Liu D X, Shao M L, Zhang F, et al. Synthesis and property evaluation of urotropine quaternary ammonium salt as a corrosion inhibitor [J]. Corros. Prot., 2018, 39: 918
[15] (刘德新, 邵明鲁, 张芳等. 乌洛托品季铵盐缓蚀剂的合成与性能评价 [J]. 腐蚀与防护, 2018, 39: 918)
[16] Hu S Q, Jia X L, Hu J C, et al. Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors [J]. J. China Univ. Petrol., 2011, 35(1): 146
[16] (胡松青, 贾晓林, 胡建春等. 咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析 [J]. 中国石油大学学报 (自然科学版), 2011, 35(1): 146)
[17] Xia S W, Qiu M, Yu L M, et al. Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance [J]. Corros. Sci., 2008, 50: 2021
doi: 10.1016/j.corsci.2008.04.021
[18] Zhang J, Yu W Z, Yan Y G, et al. Molecular dynamics simulation of the adsorption behavior of imidazoline corrosion inhibitors on a Fe(001) surface [J]. Acta Phys.-Chim. Sin., 2010, 26: 1385
doi: 10.3866/PKU.WHXB20100501
[18] (张军, 于维钊, 燕友果等. 咪唑啉缓蚀剂在Fe(001) 表面吸附行为的分子动力学模拟 [J]. 物理化学学报, 2010, 26: 1385)
doi: 10.3866/PKU.WHXB20100501
[19] Xu B, Yang W Z, Liu Y, et al. Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution [J]. Corros. Sci., 2014, 78: 260
[20] He Z L, Tao W G, Jiang X H. Theoretical evaluation of corrosion inhibition performance of N-alkyl pyridinium salt corrosion inhibitors [J]. J. China West Normal Univ. (Nat. Sci.), 2017, 38: 68
[20] (何忠凌, 陶卫国, 蒋晓慧. N-烷基吡啶季铵盐类缓蚀剂缓蚀性能的理论研究 [J]. 西华师范大学学报 (自然科学版), 2017, 38: 68)
[21] Saha S K, Ghosh P, Hens A, et al. Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor [J]. Phys. E, 2015, 66: 332
[22] Zhang J, Hu S Q, Wang Y, et al. Theoretical investigation on inhibition mechanism of 1-(2-Hydroxyethyl) -2-alkyl-imidazoline corrosion inhibitors [J]. Acta Chim. Sin., 2008, 66: 2469
[22] (张军, 胡松青, 王勇等. 1-(2-羟乙基) -2-烷基-咪唑啉缓蚀剂缓蚀机理的理论研究 [J]. 化学学报, 2008, 66: 2469)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[6] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[7] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[8] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[9] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[10] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[11] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[12] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[13] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[14] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[15] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.