Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 301-306    DOI: 10.11902/1005.4537.2013.123
  论文 本期目录 | 过刊浏览 |
超临界水冷堆燃料包壳候选材料的耐腐蚀性能
沈朝, 张乐福, 朱发文, 鲍一晨
上海交通大学核科学与工程学院 上海 200240
Corrosion Behavior of Candidate SCWR Fuel Cladding Materials
SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(1400 KB)   HTML
摘要: 介绍了超临界水冷堆候选材料的相关腐蚀实验结果,并且讨论了每种候选材料在超临界水环境中的耐腐蚀性能。根据当前研究结果可知,高Cr含量的奥氏体不锈钢在超临界水中具有良好的抗腐蚀性能,因此其最有可能成为超临界水冷堆燃料包壳材料。
关键词 超临界水冷堆燃料包壳腐蚀氧化膜    
Abstract:Corrosion performance of candidate clad materials for fuel of supercritical water-cooled reactor (SCWR) is reviewed with emphasis on that of four typical candidate alloys. According to the results presented in this paper, it is noted that the austenitic stainless steels with high Cr content show excellent corrosion resistance. Therefore, this kind of steels should be good candidate clad material for the fuel of SCWR.
Key wordssupercritical water-cooled reactor    fuel cladding    corrosion    oxide film
收稿日期: 2013-06-21     
ZTFLH:  TG172  
基金资助:国家重点基础研究发展计划项目 (2007CB209802) 资助
通讯作者: 通讯作者:张乐福,E-mail:lfzhang@sjtu.edu.cn     E-mail: lfzhang@sjtu.edu.cn
作者简介: 沈朝,男,1990年生,硕士生,研究方向为核材料腐蚀及其水化学

引用本文:

沈朝, 张乐福, 朱发文, 鲍一晨. 超临界水冷堆燃料包壳候选材料的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 301-306.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.123      或      https://www.jcscp.org/CN/Y2014/V34/I4/301

[1] Hofmeister J, Waata C, Starflinger J, et al. Fuel assembly design study for a reactor with supercritical water [J]. Nucl. Eng. Des., 2007, 237: 1513-1521
[2] Duffey R, Kuran S, Pioro I. Designing high efficiency reactors using existing ultrasupercritical technology [J]. J. Nucl. Mater., 2007, 49: 226-231
[3] Liu X J, Chen X. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly [J]. Ann. Nucl. Energ., 2009, 36: 28-36
[4] Liu X J, Yang T, Chen X. Core and sub-channel analysis of SCWR with mixed spectrum core [J]. Ann. Nucl. Energ., 2010, 37: 1674-1682
[5] Fischer K, Schulenberg T, Laurien E. Design of a supercritical water-cooled reactor with a three-pass core arrangement [J]. Nucl. Eng.Des., 2009, 239: 800-812
[6] Arthur M, Aylin Y, Marcelo S, et al. Zirconium alloys for supercritical water reactor applications: Challenges and possibilities [J]. J. Nucl. Mater., 2007, 371: 61-75
[7] Garner F, Black C, Edwards D. Factors which control the swelling of Fe-Cr-Ni ternary austenitic alloys [J]. J. Nucl. Mater., 1997, 245: 124-130
[8] Garner F, Toloczko M, Sencer B. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure [J]. J. Nucl. Mater., 2000, 276: 123-142
[9] Garry W, Pantip A, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water [J]. J. Nucl. Mater., 2007, 371: 176-201
[10] Wright G, Dooley R. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129-167
[11] Zhang L F, Zhu F W, Tang R. Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor [J]. Front. Ener. Pow. Eng. China, 2009, 3: 233-240
[12] Radak N, H?hner P, Siegl P, et al. Stress corrosion crackingsusceptibility of austenitic stainless steels in supercritical water conditions [J]. J. Nucl. Mater., 2011, 409: 117-123
[13] Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. J. Nucl. Mater., 2010, 399: 231-235
[14] Isselin J, Kasada R, Kimura A. Corrosion behaviour of 16%Cr-4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment [J]. Corros. Sci., 2010, 52: 3266-3270
[15] Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092-2097
[16] Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843-2854
[17] Cho H S, Kimura A, Ukai S. Corrosion properties of oxide dispersion strengthened steels in super critical water environment [J]. J. Nucl. Mater., 2004, 329: 387-391
[18] Gupta G, Ampornrat P, Ren X, et al. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9 [J]. J. Nucl. Mater., 2007, 361: 160-173
[19] Yoon Y S, Ha H Y, Lee T H, et al. Effect of N and C on stress corrosion cracking susceptibility of austenitic Fe18Cr10Mn-based sta- inless steels [J]. Corros. Sci., 2014, 80: 28-36
[20] Sun M C, Wu X Q, Zhang Z E. Oxidation of 316 stainless steel in supercritical water [J]. Corros. Sci., 2009, 51: 1069-1072
[21] Briggs D, Seah M. Practical surface analysis auger and X-ray photoelectron spectroscopy [J]. J. Nucl. Mater., 1990, 52: 193-335
[22] Zhang L F, Bao Y C, Tang R. Selection and corrosion evaluation testsof candidate SCWR fuel cladding materials [J]. Nucl. Eng. Des., 2012, 249: 180-187
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.