Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (5): 428-430    
  研究报告 本期目录 | 过刊浏览 |
点蚀敏感性的评价新方法--极限零概率点蚀电位法
贾志军1,2,李晓刚2
1. 清华大学化学工程系 北京 100084
2. 北京科技大学腐蚀与防护中心 北京 100083
A NEW METHOD FOR EVALUATING PITTING SENSIBILITY OF STAINLESS STEEL -- ULTIMATE ZERO PROBABILITY BREAKING POTENTIAL
JIA Zhijun1,2, LI Xiaogang2
1. Department of Chemical Engineering, Tsinghua University, Beijing 100084
2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
全文: PDF(421 KB)  
摘要: 

对1Cr13不锈钢点蚀电位的离散分布进行统计分析,利用点蚀发生概率、门槛电流密度和电极电位的关系,结合直线外延法推测出在极限门槛电流密度下,零概率点蚀电位,即极限零概率点蚀电位,可以作为评价材料耐点蚀性能的参数。

关键词 不锈钢点蚀电位门槛电流值点蚀概率    
Abstract

In order to give an exact evaluation of pitting resistance of 1Cr13 stainless steels, the discrete data of breaking potential was analyzed. By the relationship of the pitting occurrence probability, threshold value and electrode potential, a new parameter called the ultimate zero probability breaking potential was obtained. It could be used for evaluating the pitting corrosion resistance of the stainless steel.

Key wordsstainless steel    breaking potential    threshold value    pitting corrosion    probability
收稿日期: 2011-10-25     
ZTFLH:  TG171  
基金资助:

国家高技术研究发展计划项目(2009AA063405-04)资助

通讯作者: 李晓刚     E-mail: lixiaogang99@263.net
Corresponding author: LI Xiaogang     E-mail: lixiaogang99@263.net
作者简介: 贾志军,男,1983年生,博士后,研究方向为化学电源和材料的腐蚀与防护

引用本文:

贾志军,李晓刚. 点蚀敏感性的评价新方法--极限零概率点蚀电位法[J]. 中国腐蚀与防护学报, 2012, 32(5): 428-430.
JIA Zhijun, LI Xiaogang. A NEW METHOD FOR EVALUATING PITTING SENSIBILITY OF STAINLESS STEEL -- ULTIMATE ZERO PROBABILITY BREAKING POTENTIAL. Journal of Chinese Society for Corrosion and protection, 2012, 32(5): 428-430.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I5/428

[1] Habib K, Bouresli K. Detection of localized corrosion of stainless steels by optical interferrometry [J]. Electrochim. Acta, 2000, 45(3): 203-209

[2] Mayorga C D, Marquez A P A, Sarmiento M Q, et al. Evaluation of corrosion in electrochemical systems using Michelson interferometry[J]. Opt. Laser Eng., 2007, 45(1): 140-144

[3] Yuan B Y, Wang C, Li L, et al. Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography [J]. Electrochem. Commun., 2009, 11(7): 1373-1376

[4] Darowicki K, Krakowiak S, Slepski P. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2004, 49(17-18): 2909-2918

[5] Krakowiak S, Darowicki K, Slepski P. Impedance investigation of passive 304 stainless steel in the pit preinitiation state [J]. Electrochim. Acta, 2005, 50(13): 2699-2704

[6] Smulko J, Darowicki K, Zielinski A. Detection of random transients caused by pitting corrosion [J]. Electrochim. Acta, 2002, 47(8): 1297-1303

[7] Darowicki K, Krakowiak S. The current threshold value in potentiodynamic determination of the breakdown potential [J]. Electrochim. Acta, 1997, 42(16): 2559-2562

[8] Amri J, Gulbrandsen E, Nogueira R P. Numerical simulation of a single corrosion pit in CO2 and acetic acid environments [J]. Corros. Sci., 2010, 52(5): 1728-1737

[9] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41(1): 117-139

[10] Zhang G A, Cheng Y F. Micro-electrochemical characterization of corrosion of pre-cracked X70 pipeline steel in a concentrated carbonate/bicarbonate solution [J]. Corros. Sci., 2010, 52(3): 960-968

[11] Yu J G, Luo J L, Norton P R. Investigation of hydrogen induced pitting active sites [J]. Electrochim. Acta, 2002, 47(25): 4019-4025

[12] Habib K, Muhana K. Detection of crevice corrosion of steels in seawater by optical interferometry [J]. Mater. Charact., 2000, 45(3): 203-209

[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[11] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.