Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (4): 291-295    
  研究报告 本期目录 | 过刊浏览 |
316Ti在含氯离子300℃高温水中的应力腐蚀开裂
唐占梅,胡石林,张平柱
中国原子能科学研究院 北京 102413
STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS
TANG Zhanmei, HU Shilin, ZHANG Pingzhu
China Institute of Atomic Energy, Beijing 102413
全文: PDF(2316 KB)  
摘要: 采用慢应变速率拉伸(SSRT)试验方法研究了316Ti在300℃高温水中的应力腐蚀开裂(SCC)行为。结果表明,在空气饱和条件下,试样的断裂时间、延伸率以及断裂能的值随着Cl-浓度的增大显著降低,应力腐蚀敏感指数随着Cl-浓度的增大则显著递增,二者具有一定相关性。316Ti不锈钢在300℃空气饱和水中发生SCC的临界Cl-质量浓度为5 mg/L,只有在Cl-质量浓度高于或等于5 mg/L,试样才发生穿晶型和部分沿晶混合型SCC。SCC裂纹多萌生于滑移台阶或蚀坑,也可能萌生于接近表面的铁素体相处;裂纹在向基体扩展过程中,铁素体相的存在阻碍了其扩展过程,从而提高了316Ti的抗SCC能力。氧在SCC裂纹萌生和扩展过程中都起着非常重要的作用。
关键词 慢应变速率试验应力腐蚀开裂裂纹萌生裂纹扩展    
Abstract:The stress corrosion cracking (SCC) of 316Ti stainless steel (SS) in 300℃ high temperature water containing chloride ions was investigated with slow strain rate tensile (SSRT) techniques. The results showed that the values of fracture time and extension ratio and fracture energy of specimens significantly decreased with the concentration of chloride content increased, while stress corrosion sensitive index would significantly increase with the concentration of chloride ions increased. 316Ti SS was not susceptible to SCC when the chloride content was below 5 mg/L while transgranular and partially intergranular cracked when the chloride content was above 5 mg/L in aerated water. Stress corrosion cracks generally initiated from slipping steps or pits, maybe from the secondary phase ferrite. In propagation into the base metal, the cracks would be arrested by the secondary phase ferrite, so as to improve the resistance of SCC for 316Ti SS. Oxygen played a crucial role in SCC initiation and propagation of 316Ti SS in high temperature water.
Key wordsslow strain rate tension tests    stress corrosion cracking    crack initiation    crack propagation
收稿日期: 2011-08-22     
ZTFLH: 

TG172.82

 
基金资助:

大型先进压水堆核电站重大专项(2008ZX06004)资助

通讯作者: 唐占梅     E-mail: zhanmeitang@163.com
Corresponding author: TANG Zhanmei     E-mail: zhanmeitang@163.com
作者简介: 唐占梅,男,1982年生,助理研究员,博士,研究方向为核工程材料腐蚀

引用本文:

唐占梅,胡石林,张平柱. 316Ti在含氯离子300℃高温水中的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
TANG Tie-Mei, HU Shi-Lin, ZHANG Beng-Zhu. STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS. J Chin Soc Corr Pro, 2012, 32(4): 291-295.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I4/291

[1] Yang W. Stress corrosion cracking of engineering materials used in nuclear power plants [J]. Corros. Sci. Prot. Technol., 1995, 7(2): 87-92

    (杨武. 核电工程材料的应力腐蚀破裂研究[J]. 腐蚀科学与防护技术, 1995, 7(2): 87-92)

[2] Andresen P L. Environmentally assisted growth rate response of non-sensitized AISI 316 grade stainless steels in high temperature water [J]. Corrosion, 1988, 44: 450-460

[3] Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996(52): 375-395

[4] Jivkov A P. Strain-assisted corrosion cracking[D]. Sweden: Malmo University, 2002

[5] Meletis E I, Hochman R F. Crystallography of stress corrosion cracking in pure magnesium [J]. Corrosion, 1984, 40(1): 39

[6] Zhang P Z, Liu X H, Hu S L, et al. Study on environment-sensitive cracking time for 316Ti stainless steel [J]. At. Energy Sci. Technol., 1999, 33(2): 141-144

    (张平柱, 刘兴华, 胡石林等. 316Ti不锈钢环境敏感断裂起裂时间研究 [J]. 原子能科学技术, 1999, 33(2): 141-144)

[7] Xu S, Wu X Q, Han E H, et al. Low cycle fatigue fracture for 316Ti stainless steel in high temperature and pressure water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 120-125

    (徐松, 吴欣强, 韩恩厚等. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 120-125)

[8] Najarajan S, Karthega M, Rajendran N. Pitting corrosion studies of super austenitic stainless steels in natural sea water using dynamic electrochemical impedance spectroscopy[J]. J. Appl. Electrochem., 2007, 37: 195-201

[9] Yu F H, Chen C M, Zhou F G, et al. A study of the role of molybdenum in 316 stainless steel on SCC resistance in high temperature and high pressure water with the aid of CEMS, AES and XPS [J]. J. Chin. Soc. Corros. Prot., 1985, 5(8): 177-190

    (俞方华, 陈传明, 周福根等. CEMS、AES和XPS研究316钢中Mo在抗高温高压水应力腐蚀中的作用[J]. 中国腐蚀与防护学报, 1985, 5(8): 177-190)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[9] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[15] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.