Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 267-272    
  研究报告 本期目录 | 过刊浏览 |
6-硝基苯并咪唑在KOH溶液中对锌的缓蚀性能
胡莲跃,张胜涛,黄小红,吴永英
重庆大学化学化工学院 重庆 400044
CORROSION INHIBITION OF 6-NITROBENZIMIDAZOLE IN KOH SOLUTION FOR ZINC
HU Lianyue, ZHANG Shengtao,HUANG Xiaohong, WU Yongying
College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044
全文: PDF(863 KB)  
摘要: 采用失重法、电化学测试以及量子化学计算方法研究6-硝基苯并咪唑在KOH(0.1mol/L)溶液中对Zn的缓蚀性能。结果表明,6-硝基苯并咪唑能有效抑制锌的阳极氧化,从而抑制Zn在碱液中的自腐蚀,属于阳极型缓蚀剂;当6-硝基苯并咪唑浓度为5mmol/L时缓蚀效果最佳,其效率达到96.8%;6-硝基苯并咪唑在锌表面的吸附符合Langmuir等温式。
关键词 缓蚀剂6-硝基苯并咪唑吸附    
Abstract:The effect of 6-nitrobenzimidazole on the zinc corrosion in 0.1 mol/L KOH solution has been studied by electrochemical, weight loss measurements and quantum chemical calculations. It has been shown that 6-nitrobenzimidazole act as an anodic inhibitor, can effectively restrain the process of the anodic oxidation of zinc. The highest value of inhibition efficiency is 96.8% at 5 mmol/L concentration. Thermodynamic calculation suggests that the adsorption of 6-nitrobenzimidazole follows Langmuir adsorption isotherm.
Key wordsinhibition    zinc    6-nitrobenzimidazole    adsorption
收稿日期: 2011-05-22     
ZTFLH: 

O64

 
基金资助:

重庆市科委重点项目(CSTC 2008BA4020)资助

通讯作者: 张胜涛     E-mail: stzhang@cqu.edu.cn
Corresponding author: ZHANG Shengtao     E-mail: stzhang@cqu.edu.cn
作者简介: 张胜涛,男,1957年生,博士,教授,研究方向为电 化学

引用本文:

胡莲跃,张胜涛,黄小红,吴永英. 6-硝基苯并咪唑在KOH溶液中对锌的缓蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(3): 267-272.
HU Lian-Ti, ZHANG Qing-Shou, HUANG Xiao-Hong, WU Yong-Yang. CORROSION INHIBITION OF 6-NITROBENZIMIDAZOLE IN KOH SOLUTION FOR ZINC. J Chin Soc Corr Pro, 2012, 32(3): 267-272.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/267

[1] Visscher W, Einerhand R E, Barendrecht E, et al. Zinc electrode shape change[J]. J Electrochem. Soc., 1991, 138(1): 1-17

[2] McBreen J. Rechargeable zinc batteries[J]. J. Electro.Chem. Interfacial Electrochem., 1984, 168: 415-432

[3] Bass K, Mitchell P J. Wilcox G D, et al. Methods for the reduction of shape change and dendritic growth in zinc-based secondary cells[J]. J. Power Sour., 1991, 35(3): 333-351

[4] Vladimir N, Wang H J, Jonathan J, et al. A review on air cathodes for zinc-air fuel cells[J]. J. Power Sources, 2010, 195:1271-1291

[5] Prabal S, Honggon K. Zinc-air fuel cell, a potential candidate for alternative energy[J]. J. Ind. Eng. Chem., 2009, 15:445-450

[6] Wen Y H, Cheng J, Ning S Q, et al. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction[J]. J. Power Sources,2009, 188: 301-307

[7] Einerhand R E F, Visscher W. Zinc electrode shape change

Process and mechanism[J]. J. Electrochem. Soc., 1991, 138(1):7-17

[8] McBreen J, Gannon E. The electrochemistry of metal oxide additives in pasted zinc electrodes[J]. Electrochem. Acta, 1981,26(10): 1439-1446

[9] McBreen J, Gannon E. The effect of additives on current distribution in pasted zinc electrodes[J]. J. Electrochem. Soc,1983, 130(10): 1980-1982

[10] Wilcox G D, Mitchell P J. Electrolyte additives for zinc-anoded secondary cells II. Quaternary ammonium compounds[J]. J.Power Sources, 1990, 32(1): 31-41

[11] Sato Y, Kanda M, Niki H, et al. Long life sealed nickel-zinc cell using a new separator[J]. J. Power Sour., 1983,9(2): 147-159

[12] Woumfo E D, Vittori O. Electrochemical behavior of a zinc electrode in 8M KOH under pulsed potential loading. J. Appl.Electrochem., 1991, 21(1): 77-83

[13] Li X M, Tao C Y, Zhang S T. Effect of current collector treated electroless plating indium on exhaustion hydrogen process of zinc powder[J]. Battery Bimonthly, 1999, 29(3): 100-102

     (黎学明, 陶长元, 张胜涛. 化学镀铟集流体对锌粉析氢行为的影响[J].电池, 1999, 29(3): 100-102)

[14] Liu T Q, Zou A H , Guo R. Effect of surfactant and cosurfactant on the protecting corrosion for nickel[J].  Acta Phys-Chim. Sin. (in Chin.), 2000, 16(10): 899-905

     (刘天晴,邹爱华, 郭荣. 表面活性剂和助表面活性剂对镍的缓蚀作用[J].物理化学学报, 2000, 16(10): 899-905)

[15] Ye M K,Wang J Q,Tian Z W,The anodic dissolution and passivation mechanism of Zn in KOH aqueous solution[J]. Chem. J.Chin. Univ., 1981, 2(3): 337-350

     (叶明库, 汪继强, 田昭武.Zn在KOH水溶液中的阳极溶解和钝化机理[J]. 高等学校化学学报, 1981,2(3): 337-350)

[16] CAI M, PARK S M. Oxidation of zinc in alkaline solutions studied by electrochemical impedance spectroscopy[J]. J Electrochem.Soc., 1996, 143(12): 3895-3902

[17] Bereket G, Hur E, Ogretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J]. J. Mol. Struct: Theochem., 2002, 578(1-3): 79-88

[18] Zhang S T, Tao Z H, Li W H, et al. A corrosion inhibition of mild steel by novel triazole compound in 1 mol/L HCl solution[J].J. Chin. Soc. Corros. Prot., 2009, 29(6): 487-492

    (张胜涛,陶志华, 李伟华等. 新型三氮唑化合物在1 mol/L HCl中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2009, 29(6): 487-492)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[7] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.