Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 563-570    DOI: 10.11902/1005.4537.2019.231
  研究报告 本期目录 | 过刊浏览 |
环氧富锌涂层防腐蚀性能研究
赵书彦1,童鑫红2,刘福春1(),翁金钰2,韩恩厚1,郦晓慧3,杨林3
1. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2. 福建华电可门发电有限公司 福州 364400
3. 华电电力科学研究院有限公司 杭州 310030
Corrosion Resistance of Three Zinc-rich Epoxy Coatings
ZHAO Shuyan1,TONG Xinhong2,LIU Fuchun1(),WENG Jinyu2,HAN En-Hou1,LI Xiaohui3,YANG Lin3
1. Key Laboratory of Nuclear Materials and Safety Evaluation, Chinese Academy of Sciences, Shenyang 110016, China
2. Fujian Huadian Kemen Power Generation Co. , Ltd. , Fuzhou 364400, China
3. Huadian Electric Power Research Institute Co. , Ltd. , Hangzhou 310030, China
全文: PDF(5551 KB)   HTML
摘要: 

制备了添加纳米SO2材料的纳米复合环氧富锌涂层,通过测试金属Zn含量、拉开法附着力、浸泡实验、盐雾实验和电化学阻抗谱实验,并与两种未添加纳米材料的环氧富锌涂层防腐蚀性能进行对比研究,结果表明,纳米复合环氧富锌涂层具有良好的附着力和内聚力,前期可以作为有机屏蔽层,中期阴极保护作用温和,持续时间长,后期Zn的反应产物又可以提供涂层良好的屏蔽,耐腐蚀性能显著,而未添加纳米材料的两种富锌涂层由于起泡和锈蚀而失效。

关键词 涂层失效环氧富锌涂层阴极保护耐腐蚀电力设施沿海环境    
Abstract

Nano-composite coatings composed of nano-silica materials and Zn-rich epoxy coating were prepared, and their corrosion resistance was comparatively assessed with two zinc-rich epoxy coatings without addition of nano-silica by means of pull-off test for adhesion, immersion test, salt spray test and electrochemical impedance spectroscopy, as well as Zn content measurement. The results show that nanocomposite coatings have good performance in adhesion and cohesion, and they can act as good organic barrier to inward migration of corrosive species in the early corrosion stage, then present a moderate cathodic protection effect for a long term in the middle stage and finally the corrosion product of Zn can provide good barrier effect in the later stage, in the contrast, the two zinc-rich epoxy coatings without addition of nano-silica may prematurly break down due to blistering and rusting.

Key wordscoating failure    Zn-rich epoxy coating    cathodic protection    corrosion resistant    power facility    coastal environment
收稿日期: 2019-03-19     
ZTFLH:  TG174  
基金资助:中国华电公司科技项目和沈阳市科技计划项目(Y17-1-039)
通讯作者: 刘福春     E-mail: fcliu@imr.ac.cn
Corresponding author: Fuchun LIU     E-mail: fcliu@imr.ac.cn
作者简介: 赵书彦,女,1978年生,工程师

引用本文:

赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
Shuyan ZHAO, Xinhong TONG, Fuchun LIU, Jinyu WENG, En-Hou HAN, Xiaohui LI, Lin YANG. Corrosion Resistance of Three Zinc-rich Epoxy Coatings. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 563-570.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.231      或      https://www.jcscp.org/CN/Y2019/V39/I6/563

图1  涂层附着力测试形貌
CoatingAdhesionMPaAverage valueMPaDamage area and type
NF

4.57、5.46、4.66

4.70、4.30、7.24

510B, 90B/Y
HH

2.24、4.03、3.82

2.98、4.79、3.90

485B, 15B/Y
XS

2.97、3.49、2.95

5.28、3.60、2.40

280B, 20B/Y
表1  涂层附着力数据表
图2  3种涂层试样盐雾实验1000 h后的形貌
图3  3种涂层试样盐雾实验1000 h后划痕处截面的SEM像
图4  3种涂层试样盐雾实验1000 h后划痕处截面的EDS谱
图5  3种涂层试样盐雾实验1000 h后表面的微观形貌
图6  3种涂层试样浸泡实验1500 h后的形貌
图7  涂层试样自腐蚀电位在3.5%NaCl溶液中不同浸泡时间的变化曲线
图8  涂层试样的Nyquist图和Bode图
图9  等效电路图
图10  电阻和电容随浸泡时间的变化曲线
[1] Beiro M, Collazo A, Izquierdo M, et al. Characterisation of barrier properties of organic paints: The zinc phosphate effectiveness [J]. Prog. Org. Coat., 2003, 46: 97
[2] Shao Y W, Jia C, Meng G Z, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel [J]. Corros. Sci., 2009, 51: 371
[3] Schaefer K, Miszczyk A. Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc [J]. Corros. Sci., 2013, 66: 380
[4] Marchebois H, Savall C, Bernard J, et al. Electrochemical behavior of zinc-rich powder coatings in artificial sea water [J]. Electrochim. Acta, 2004, 49: 2945
[5] Zeng D F, Tao N W, Jiang S W, et al. NORSOK M-501 test method for heavy-duty anticorrosive marine coatings [J]. Coat. Ind., 2015, 45(8): 51
[5] (曾登峰, 陶乃旺, 江水旺等. 海工重防腐涂料NORSOK M-501试验方法介绍及结果讨论 [J]. 涂料工业, 2015, 45(8): 51)
[6] Shreepathi S, Bajaj P, Mallik B P. Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: Role of Zn content on corrosion protection mechanism [J]. Electrochim. Acta, 2010, 55: 5129
[7] Zhang R C, Tian Y L, Liu B P. Effect of PVC and CPVC on anticorrosivity of epoxy zinc-rich primer [J]. Shanghai Coat., 2009, 47(9): 45
[7] (张汝才, 田玉廉, 刘佰平. PVC和CPVC对环氧富锌底漆防腐性的影响 [J]. 上海涂料, 2009, 47(9): 45)
[8] Rodríguez M T, Gracenea J J, Saura J J, et al. The influence of the critical pigment volume concentration (CPVC) on the properties of an epoxy coating: Part II. Anticorrosion and economic properties [J]. Prog. Org. Coat., 2004, 50: 68
[9] Yang Z B, Li Y D, Yang Z L, et al. Application of flaky zinc powder to zinc-rich coating field and its technology development tendency [J]. Electroplat. Finish., 2011, 30(2): 62
[9] (杨振波, 李运德, 杨忠林等. 片状锌粉在富锌涂料领域的应用及其技术发展趋势 [J]. 电镀与涂饰, 2011, 30(2): 62)
[10] Yu X H, Zhu X Y, Guo Z Z, et al. Development of amicable flake zinc based heavy duty anticorrosive epoxy coating [J]. Surf. Technol., 2005, 34(1): 53
[10] (于晓辉, 朱晓云, 郭忠诚等. 鳞片状锌基环氧富锌重防腐涂料的研制 [J]. 表面技术, 2005, 34(1): 53)
[11] Jagtap R N, Nambiar R, Hassan S Z, et al. Predictive power for life and residual life of the zinc rich primer coatings with electrical measurement [J]. Prog. Org. Coat., 2007, 58: 253
[12] Liu B, Li Y, Wang F H. Study on the effect of zinc pigments size on the electrochemical behavior of organic zinc-rich coatings [J]. J. Chin. Sci. Prot. Technol., 2003, 23: 350
[12] (刘斌, 李瑛, 王福会. 锌粉颜料尺寸对有机富锌涂层电化学行为的影响 [J]. 中国腐蚀与防护学报, 2003, 23: 350)
[13] Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
[14] Plagemann P, Weise J, Zockoll A. Zinc magnesium-pigment rich coatings for corrosion protection of aluminum alloys [J]. Prog. Org. Coat., 2013, 76: 616
[15] Jagtap R N, Patil P P, Hassan S Z. Effect of zinc oxide in combating corrosion in zinc-rich primer [J]. Prog. Org. Coat., 2008, 63: 389
[16] Gergely A, Bertóti I, T?r?k T, et al. Corrosion protection with zinc -rich epoxy paint coatings embedded with various amounts of highly dispersed polypyrrole -deposited alumina monohydrate particles [J]. Prog. Org. Coat., 2013, 76: 17
[17] Cheng L H, Liu C L, Han D J, et al. Effect of graphene on corrosion resistance of waterborne inorganic?zinc-rich?coatings [J]. J. Alloy. Compd., 2019, 774: 255
[18] Ding R, Zheng Y, Yu H B, et al. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings [J]. J. Alloy. Compd., 2018, 748: 481
[19] Pereira D, Scantlebury J D, Ferreira M G S, et al. The application of electrochemical measurements to the study and behaviour of Zinc-rich coatings [J]. Corros. Sci., 1990, 30: 1135
[20] ? Knudsen O, Steinsmo U, Bjordal M. Zinc-rich primers-Test performance and electrochemical properties [J]. Prog. Org. Coat., 2005, 54: 224
[21] Shi H W, Liu F C, Han E-H. The corrosion behavior of zinc-rich paints on steel: Influence of simulated salts deposition in an offshore atmosphere at the steel/paint interface [J]. Surf. Coat. Technol., 2011, 205: 4532
[22] Uhlig H H, Revie R W. Corrosion and Corrosion Control [M]. New York: Wiley-Interscience, 1985: 263
[23] Huo S Z. Electrochemical Protection [M]. Beijing: Chemical Industry Press, 1988: 20
[23] (火时中. 电化学保护 [M]. 北京: 化学工业出版社, 1988: 20)
[24] Abreu C M, Izquierdo M, Merino P, et al. A new approach to the determination of the cathodic protection period in zinc-rich paints [J]. Corrosion, 1999, 55: 1173
[25] Liang Y C, Zhao S Y, Nie M, et al. Influence of curing agents on anti-corrosion properties of nanocomposite Zinc-rich coatings [J]. Chin. J. Mater. Res., 2012, 26: 652
[25] (梁永纯, 赵书彦, 聂铭等. 固化剂对纳米复合环氧富锌涂层耐腐蚀性的影响 [J]. 材料研究学报, 2012, 26: 652)
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[6] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[7] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[8] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[9] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[10] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[11] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[12] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[13] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[14] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[15] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.