Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 105-114    DOI: 10.11902/1005.4537.2019.035
  研究报告 本期目录 | 过刊浏览 |
木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究
李向红1(), 邓书端2, 徐昕1
1 西南林业大学化学工程学院 昆明 650224
2 西南林业大学材料科学与工程学院 昆明 650224
Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution
LI Xianghong1(), DENG Shuduan2, XU Xin1
1 College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
2 Faculty of Materials Science and Engineering, Southwest Forestry University, Kunming 650224, China
全文: PDF(3700 KB)   HTML
摘要: 

将两种烯类单体烯丙基磺酸钠 (SAS) 和丙烯酰胺 (AA) 同时接枝共聚在木薯淀粉 (CS) 上制备出木薯淀粉三元接枝共聚物CS-SAS-AAGC;用失重法、电化学法、扫描电镜 (SEM) 和接触角测试研究了CS-SAS-AAGC对冷轧钢在H2SO4溶液中的缓蚀性能。结果表明,CS-SAS-AAGC的缓蚀性能远远优于CS,SAS和AA,最大缓蚀率可超过90%,且在钢表面的吸附符合Langmuir吸附等温式。缓蚀性能随温度和酸浓度的增加而逐渐下降,但随腐蚀浸泡时间的延长而基本保持不变。CS-SAS-AAGC为抑制阴极为主的混合抑制型缓蚀剂;添加CS-SAS-AAGC后钢电极表面的电荷转移电阻显著增大,腐蚀微观形貌显著降低,且具有较强的疏水性。

关键词 三元接枝共聚物缓蚀冷轧钢硫酸吸附    
Abstract

Cassava starch ternary graft copolymer (CS-SAS-AAGC) was prepared by grafting two monomers of sodium allylsulfonate (SAS) and acryl amide (AA) simultaneously on the plain cassava starch (CS). The inhibition effect of CS-SAS-AAGC on the corrosion of cold rolled steel (CRS) in H2SO4 was studied by mass loss method, electrochemical technique, scanning electron microscope (SEM) and contact angle measurement. The results show that inhibition performance of CS-SAS-AAGC is better than the single CS, AA or SAS, and the maximum inhibition efficiency is higher than 90%. The adsorption of CS-SAS-AAGC on CRS surface obeys Langmuir isotherm. Inhibitive action gradually decreases with the increase of temperature and acid concentration, while almost remains stable along with the increase of immersion time. CS-SAS-AAGC acts as a mixed-type inhibitor while mainly retards the cathodic reaction. With the addition of CS-SAS-AAGC, the charge transfer resistance of CRS electrode surface is drastically increased, the CRS surface becomes hydrophobic, as a result, its corrosion is efficiently mitigated.

Key wordscassava starch ternary graft copolymer    inhibition    cold rolled steel    sulfuric acid    adsorption
收稿日期: 2019-03-14     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51561027);云南省中青年学术和技术带头人人才培养项目(2015HB049);云南省中青年学术和技术带头人人才培养项目(2017HB030)
通讯作者: 李向红     E-mail: xianghong-li@163.com
Corresponding author: LI Xianghong     E-mail: xianghong-li@163.com
作者简介: 李向红,男,1981年生,博士,教授

引用本文:

李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
Xianghong LI, Shuduan DENG, Xin XU. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 105-114.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.035      或      https://www.jcscp.org/CN/Y2020/V40/I2/105

图1  CS和CS-SAS-AAGC的FTIR谱图
图2  20 ℃时1.0 mol/L H2SO4溶液中CS-SAS-AAGC的缓蚀率与缓蚀剂浓度的关系
图3  20 ℃时1.0 mol/L H2SO4溶液中的c/θ-c直线
Inhibitorr 2SlopeK / L·mg-1ΔG0 / kJ·mol-1
SAS0.97992.250.03528-25.5
CS0.99171.870.05403-26.6
AA0.99901.440.1103-28.3
CS-SAS-AAGC0.99961.010.2320-30.1
表1  c/θ-c直线回归参数及标准吸附Gibbs自由能
图4  1.0 mol/L H2SO4溶液中的缓蚀率与温度的关系
图5  1.0 mol/L H2SO4溶液中ln v-1/T拟合直线
Inhibitorr 2Ea / kJ·mol-1A / g·m-2·h-1
Blank0.997046.653.68×109
SAS0.994154.044.61×109
CS0.996152.672.44×1010
AA0.986453.292.01×1010
CS-SAS-AAGC0.989165.236.22×1011
表 2  lnv-1/T直线的腐蚀动力学参数
图6  1.0 mol/L H2SO4溶液中ln(v/T)-1/T拟合直线
Inhibitorr 2?H / kJ·mol-1?S / g·m-2·h-1
Blank0.996744.06-70.51
SAS0.993751.45-49.47
CS0.995750.07-54.79
AA0.988150.69-56.37
CS-SAS-AAGC0.985362.63-27.86
表3  ln(v/T)-1/T直线的腐蚀动力学参数
图7  20 ℃时缓蚀率与H2SO4溶液浓度的关系
图8  20 ℃ 时H2SO4溶液中lnv-C拟合直线
Inhibitorr 2k / g·m-2·h-1B / g·m-2·h-1·L·mol-1
Blank0.999911.250.51
SAS0.99606.630.60
CS0.99735.690.62
AA0.99653.270.78
CS-SAS-AAGC0.99810.481.26
表 4  lnv-C直线的腐蚀动力学参数
图9  20 ℃ 时1.0 mol/L H2SO4溶液中ηw-t变化曲线
图10  CRS在20 ℃时含CS-SAS-AAGC的1.0 mol/L H2SO4溶液中的极化曲线
cmg·L-1EcorrmV (vs SCE)IcorrμA·cm-2-bcmV·dec-1bamV·dec-1ηp%
----44826812417---
10-448941322864.9
30-444341192787.3
50-432121031695.5
表5  20 ℃时冷轧钢在1.0 mol/L H2SO4溶液中的动电位极化参数
图11  钢在20 ℃时含CS-SAS-AAGC的1.0 mol/L H2SO4溶液中的Nyquist图
图12  拟合EIS的等效电路图
cmg·L-1RsΩ·cm2RtΩ·cm2RLΩ·cm2QΩ·cm2aμΩ·sa·cm-2LH·cm2ηR%
---0.83311775400.8591129---
100.67762963140.9195105159.2
301.7620210692050.8513196384.7
502.6629812321390.8733537889.6
表6  20 ℃时冷轧钢在1.0 mol/L H2SO4中的电化学阻抗谱参数
图13  冷轧钢表面浸泡前后的SEM微观形貌
图14  冷轧钢表面浸泡前后的接触角形貌
图15  CS和CS-SAS-AAGC的分子结构式
[1] Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: A short view [J]. Chem. Eng. Commun., 2016, 203: 1145
[2] Umoren S A, Eduok U M. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review [J]. Carbohydr. Polym., 2016, 140: 314
[3] Fiori-Bimbi M V, Alvarez P E, Vaca H, et al. Corrosion inhibition of mild steel in HCl solution by pectin [J]. Corros. Sci., 2015, 92: 192
[4] Azzaoui K, Mejdoubi E, Jodeh S, et al. Eco friendly green inhibitor Gum Arabic (GA) for the corrosion control of mild steel in hydrochloric acid medium [J]. Corros. Sci., 2017, 129: 70
[5] Umoren S A, Banera M J, Alonso-Garcia T, et al. Inhibition of mild steel corrosion in HCl solution using chitosan [J]. Cellulose, 2013, 20: 2529
[6] Bayol E, Gürten A A, Dursun M, et al. Adsorption behavior and inhibition corrosion effect of sodium carboxymethyl cellulose on mild steel in acidic medium [J]. Acta Phys.-Chim. Sin., 2008, 24: 2236
[7] Biswas A, Pal S, Udayabhanu G. Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl [J]. Appl. Surf. Sci., 2015, 353: 173
[8] Roy P, Karfa P, Adhikari U, et al. Corrosion inhibition of mild steel in acidic medium by polyacrylamide grafted Guar gum with various grafting percentage: Effect of intramolecular synergism [J]. Corros. Sci., 2014, 88: 246
[9] Fu H, Li X H, Li Y X, et al. Corrosion inhibition of cassava starch graft acryl amide copolymer for cold rolled steel in hydrochloric acid [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 265
[9] (付惠, 李向红, 李云仙等. 木薯淀粉接枝共聚物在盐酸介质中对冷轧钢的缓蚀作用 [J]. 中国腐蚀与防护学报, 2011, 31: 265)
[10] Li X H, Deng S D. Cassava starch graft copolymer as an eco-friendly corrosion inhibitor for steel in H2SO4 solution [J]. Korean J. Chem. Eng., 2015, 32: 2347
[11] Kizil R, Irudayaraj J, Seetharaman K. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy [J]. J. Agric. Food Chem., 2002, 50: 3912
[12] Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid [J]. Corros. Sci., 1999, 41: 1937
[13] Fuchs-Godec R, Doleček V. A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media [J]. Colloids Surf. A, 2004, 244: 73
[14] Yilmaz N, Fitoz A, Ü Ergun, et al. A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino) methyl) phenol as a corrosion inhibitor for mild steel in a highly acidic environment [J]. Corros. Sci., 2016, 111: 110
[15] Zakaria K, Hamdy A, Abbas M A, et al. New organic compounds based on siloxane moiety as corrosion inhibitors for carbon steel in HCl solution: Weight loss, electrochemical and surface studies [J]. J. Taiwan Ins. Chem. Eng., 2016, 65: 530
[16] Mathur P B, Vasudevan T. Reaction rate studies for the corrosion of metals in acids—I, iron in mineral acids [J]. Corrosion, 1982, 38: 171
[17] Khadiri A, Saddik R, Bekkouche K, et al. Gravimetric, electrochemical and quantum chemical studies of some pyridazine derivatives as corrosion inhibitors for mild steel in 1M HCl solution [J]. J. Taiwan Ins. Chem. Eng., 2016, 58: 552
[18] Cao C. One electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38: 2073
[19] Markhali B P, Naderi R, Mahdavian M, et al. Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media [J]. Corros. Sci., 2013, 75: 269
[20] Lagrenée M, Mernari B, Bouanis M, et al. Study of the mechanism and inhibiting efficiency of 3,5-bis (4-methylthiophenyl) -4H-1,2,4-triazole on mild steel corrosion in acidic media [J]. Corros. Sci., 2002, 44: 573
[21] Lorenz W J, Mansfeld F. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corros. Sci., 1981, 21: 647
[22] Schweinsberg D P, Ashworth V. The inhibition of the corrosion of pure iron in 0.5 M sulphuric acid by n-alkyl quaternary ammonium iodides [J]. Corros. Sci., 1988, 28: 539
[23] Roy S C, Roy S K, Sircar S C. Critique of inhibitor evaluation by polarization measurement [J]. Br. Corros. J., 1988, 32: 102
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[6] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[7] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[8] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[9] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[10] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] 刘志峰,朱志平,石纯,黄赵鑫. 载流法制备硫酸露点腐蚀模拟气体的试验研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[12] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[14] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[15] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.