Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 262-266    
  研究报告 本期目录 | 过刊浏览 |
Ce对Mg-9Gd-4Y-1Nd-0.6Zr合金微观组织和耐蚀性的影响
易建龙1,2,张新明2
1. 湖南农业大学理学院 长沙 410128
2. 中南大学材料科学与工程学院 长沙 410012
EFFECTS OF Ce ON MICROSTRUCTURE AND CORROSION RESISTANCE OF Mg-9Gd-4Y-1Nd-0.6Zr ALLOY
YI Jianlong1,2, ZHANG Xinming2
1. Science College of Hunan Agricultural University, Changsha 410128
2. School of Materials Science and Engineering, Central South University, Changsha 410012
全文: PDF(1015 KB)  
摘要: 为获得高强耐蚀的镁稀土合金,采用扫描电镜、X射线衍射分析、腐蚀失重法、电化学阻抗和动电位极化等研究了元素Ce对Mg-9Gd-4Y-1Nd-0.6Zr合金微观组织和耐蚀性的影响。结果表明添加0.5% Ce后合金耐腐蚀性能较好,合金的腐蚀电流密度为不含铈合金的55.6%,腐蚀电位正移约141 mV。适量Ce元素的加入导致其他稀土元素在晶界处富集并呈网状分布,使第二相粒子尺寸变小,体积分数变大。
关键词 Mg-9Gd-4Y-1Nd-0.6Zr镁合金微观组织腐蚀    
Abstract:To obtain high strength and good corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy, effects of Ce on microstructure and corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr magnesium alloy was investigated by means of scanning electron microscopy, X-ray diffraction, corrosion mass loss test, electrochemical impedance spectroscopy and potentio-dynamic polarization test. The Mg alloy with 5% Ce shows better corrosion resistance. Its corrosion current density decreased about 55.6%. Its corrosion potential moved positive about 141 mV than that of Mg-9Gd-4Y-1Nd-0.6Zr alloy. Rare earth elements in the Mg alloy enriched along grain boundary as network distribution were caused by proper content of Ce. Corrosion resistance of the Mg alloy was enhanced by change of second phase particles. Their volume fraction in the Mg alloy surface increased higher and their sizes decreased than those of Mg-9Gd-4Y-1Nd-0.6Zr alloy.
Key wordsMg-9Gd-4Y-1Nd-0.6Zr    magnesium alloy    microstructure    corrosion
收稿日期: 2011-05-03     
ZTFLH: 

TG146.2

 
基金资助:

湖南省农业大学引进人才基金项目(11YJ10)资助

通讯作者: 易建龙     E-mail: yijianlong@126.com
Corresponding author: YI Jianlong     E-mail: yijianlong@126.com
作者简介: 易建龙,男,1975年生,讲师,研究方向为轻金属材料的腐蚀与防护

引用本文:

易建龙,张新明. Ce对Mg-9Gd-4Y-1Nd-0.6Zr合金微观组织和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 262-266.
YI Jian-Long, ZHANG Xin-Meng, DENG Yun-Lai. EFFECTS OF Ce ON MICROSTRUCTURE AND CORROSION RESISTANCE OF Mg-9Gd-4Y-1Nd-0.6Zr ALLOY. J Chin Soc Corr Pro, 2012, 32(3): 262-266.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/262

[1] Xiao Y, Zhang X M,Chen J M, et al. Performance of Mg-9Gd-4Y-0.6Zr alloy with high strength and heat resistance [J]. J.Central South Univ.(Sci. Technol.), 2006, 37(5): 850-855)

    (肖阳, 张新明, 陈健美等. 高强耐热 Mg-9Gd-4Y-0.6Zr合金的性能[J].中南大学学报(自然科学版), 2006, 37(5): 850-855)

[2] Zhang XM, Li L, Deng YL, et al. Superplasticity and microstructure in Mg-Gd-Y-Zr alloy prepared by extrusion. [J]. J.Alloys. Compd. 2009, 481(1-2): 296-300

[3] Liu S F, Huang S Y, Xu P. Influence of cerium addition on as-cast microstructure refinement of AZ91 magnesium alloy [J]. Acta Metall. Sin., 2006, 42(4): 443-448

    (刘生发, 黄尚宇, 徐萍. Ce对AZ91镁合金铸态组织细化的影响[J]. 金属学报, 2006, 42(4): 443-448)

[4] Zhou H T, Zeng X Q, Liu W F, et al. Effect of Ce on microstructures and mechanical properties of AZ61 wrought magnesium [J]. Chin. J. Nonferrous Met., 2004, 14(1): 99-104

    (周海涛,曾小勤, 刘文法等. 稀土铈对 AZ61 变形镁合金组织和力学性能的影响[J].中国有色金属学报, 2004, 14(1): 99-104)

[5] Wang S W, Xia C Q, Wu A R. Effects of Ce on the microstructure and mechanical properties of AZ31 magnesium alloy [J]. Mining Metall. Eng., 2006, 26(4): 76-78

    (王少武, 夏长清,吴安如. 稀土铈对AZ31镁合金显微组织和力学性能的影响[J]. 矿冶工程,2006, 26(4): 76-78)

[6] Zhong L Y, Liu W J, Cao F H, et al. Effect of cerium and lanthanum alloy on microstructure and corrosion behavior of AZ91 magnesium alloy [J]. Corros. Sci. Prot. Technol., 2009, 21(2): 91-93

    (钟丽应, 刘文娟, 曹发和等. 稀土铈, 镧合金化对 AZ91腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(2), 91-93)

[7] Baril G, Blanc C, Pebere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures.[J]. J. Electrochem. Soc., 2001, 148: B489

[8]  Zhao H J, Zhang Y H, Kang Y L. Effect of cerium on the ignition point of AZ91D magnesium alloy [J]. Light Alloy Fabr.Technol., 2008, 36 (2): 42-44

     (赵鸿金, 张迎晖, 康永林.稀土元素Ce对AZ91D镁合金燃点的影响[J]. 轻合金加工技术, 2008, 36(2):42-44)

[9] Li D G, Feng Y R, Bai Z Q, et al. Effect of cerium on the electronic property of passive film formed on Fe-3Cr alloy [J]. J.Chin. Soc. Corros. Prot., 2008, 28(6): 363-368

    (李党国,冯耀荣, 白真权等. 稀土铈对Fe-3Cr钝化膜电化学腐蚀行为的影响[J].中国腐蚀与防护学报, 2008, 28(6): 363-368)

[10] Zhao X, Wang Y D, Zhu Y. Effect of Ce and Mg on the corrosion resistance of hot-dip aluminizing coating [J]. Mater.Prot., 2008, 41(11): 14-15

    (赵霞, 王永东, 朱艳等.稀土铈和镁对热浸铝镀层耐蚀性能的影响[J]. 材料保护, 2008, 41(11):14-15)

[11] Peng, Z K, Zhang X M, Chen J M, et al. Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium[J]. Mater. Sci. Technol.,2005, 21(6): 722-726

[12] Song G L. Magnesium Alloy Corrosion and Protection [M].Beijing: Chemistry Industry Press, 2006

     (宋光铃.镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006)

[13] Yi J L, Zhang X M, Deng Y L, et al. Effects of ageing on strength and corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy [J].J. Mater. Sci. Eng., 2010, (4): 490-493

     (易建龙, 张新明,邓运来等. 时效对Mg-9Gd-4Y-1Nd-0.6Zr镁合金强度和耐蚀性的影响[J].材料科学与工程学报, 2010, (4): 490-493)

[14] Morlidge J R, Skeldon P, Thompson G. E, et al. Format-ion and the efficiency of anodic film growth on aluminium[J].Electrochim. Acta, 1999, 44(14): 2423-2435

[15] Makar G L, Kruger J, Joshi A. Advances in magnesium alloys and composites[C]. Magnesium Technology, 1988: 105-121

[16] Zhang Z X, Wang E K. Electrochemical Principle and Method [M]. Beijing: Science Press, 2000

     (张祖训, 汪尔康,电化学原理和方法[M]. 北京: 科学出版社, 2000)
 
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[11] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.