Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (6): 373-378     
  综述 本期目录 | 过刊浏览 |
混凝土硫酸杆菌腐蚀研究进展
唐咸燕
中南大学
Research Progress of Thiobacilli on Concrete corrosion
中南大学
全文: PDF(417 KB)  
摘要: 对于市政排污管道而言,硫酸杆菌往往是造成其腐蚀的一个主要原因.本文总结了近年来混凝土硫酸杆菌腐蚀的研究进展.归纳认为针对混凝土硫酸杆菌腐蚀的研究大致可以分为两种实验研究方法:细菌模拟测试和现场暴露测试.同时还介绍了混凝土硫酸杆菌的腐蚀机理以及硫酸杆菌侵蚀与化学硫酸侵蚀的区别;总结了在评价混凝土抗硫酸杆菌侵蚀性能时使用的各种参数以及提高混凝土抗侵蚀性能的措施.最后认为虽然对混凝土的硫酸杆菌腐蚀的研究取得了一些进展,但是该领域在国内尚属起步研究阶段,在腐蚀程度的评价、预测模型的建立、细菌与母体的关系以及是否可以利用细菌活动来提高混凝土的抗腐蚀能力等方面的研究还很欠缺,建议尽快加强这些方面的研究
关键词 混凝土硫酸杆菌腐蚀耐久性研究进展    
Abstract:Thiobacilli corrosion is often a problem in sewer environment. The research progresses of thiobacilli on concrete corrosion in recent years were reviewed. It’s concluded that the research done on thiobacilli corrosion of concrete can roughly be divided into two groups: bacteria simulation tests and exposure tests in situ .The corrosion mechanism of concrete induced by thiobacilli and the distinction between sulfuric acid corrosion and thiobacilli corrosion were explained. In addition, the parameters which were used to evaluate the concrete’s corrosion degree and the methods which were used to improve the concrete’s durability were also concluded. The conclusions as following are made at the end: Though some advances had been made so far, there are a lot of void in the study of concrete corrosion resulted from thiobacilli. Especially the grading of the corrosion, the models for predicting corrosion rate, the relationship between substratum and the bacteria responsible for the production of the sulfuric acid and whether can utilize the bacteria to improve the concrete’s durability or not should be intensified as soon as possible.
Key wordsThiobacilli    Concrete    Corrosion    Durability    Advances
收稿日期: 2006-04-13     
ZTFLH:  TU503  
通讯作者: 唐咸燕     E-mail: tangxianyan1981@163.com

引用本文:

唐咸燕 . 混凝土硫酸杆菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2007, 27(6): 373-378 .

链接本文:

https://www.jcscp.org/CN/Y2007/V27/I6/373

[1]Chen L P.Ecnomic losses induced by microorganism corrosion andits countermeasures[J].Corros.Prot.,1996,(6):248-251(陈六平.微生物腐蚀所导致的经济损失与对策[J].腐蚀与防护,1996,(6):248-251)
[2]Olmstead W M,Hamlin H.Converting portions of the Los Angelesoutfall sewer into a septic tank[J].Eng.News,1900,44:317
[3]Parker C D.The corrosion of concreteⅠ.The isolation of a speciesof bacterium associated with the corrosion of concrete exposed toatmospheres containing hydrogen sulfide[J].Australian J.Experi-mental Biology and Medical Sci.,1945,23:81-90
[4]Parker C D.The corrosion of concreteⅡ.The function of thiobacil-lus concretivorus novel species in the corrosion of concrete ex-posed to atmospheres containing hydrogen sulfide[J].Australian J.Experimental Biology and Medical Sci.,1945,23:91-98
[5]Parker C D.Mechanics of corrosion of concrete sewers by hydrogensulfide[J].Sewage Ind Wastes,1951,23:1477-1485
[6]Redner J A,Esfandi E J,His R P.Evaluation of protective coat-ings for concrete exposed to sulfide generation in wastewater treat-ment facilities[J].J.Prot.Coat.Lin.,1991,(8):48-58
[7]Chandra S,Berntsson L.Deterioration of concrete in swimming poolsin the south of Sweden[J].ACI Mater.J.,1988,85:489
[8]Zherebyateva T V,Lebedeva E V,Karavaiko G I.Microbiologicalcorrosion of concrete structures of hydraulic facilities[J].Geomi-crobiology Journal,1991,(9):119-127
[9]Liu H F,Xu L M,Zheng J S.Steel corrosion under sulfate-reduc-ing bacteria biofilm[J].Oilfield Chemistry,2000,17(1):93-96(刘宏芳,许立铭,郑家.硫酸盐还原菌生物膜下钢铁腐蚀研究概况[J].油田化学,2000,17(1):93-96)
[10]Roberts D J,Nica D,Zuo G,et al.Quantifying microbially in-duced deterioration of concrete:initial studies[J].International Biodeterior.Biodegrad.,2002,49:227-234
[11]Ismail N,Nonaka T,Noda S,et al.Effect of carbonation on mi-crobial corrosion of concrete[J].J.Constr.Manage.Eng.,1993,20:133-138
[12]Han J Y,Dai C,Gao Z H,et al.Microorganism corrosion ofconcrete[J].Mater.Rep.,2002,16(10):42-44(韩静云,戴超,郜志海等.混凝土的微生物腐蚀[J].材料导报,2002,16(10):42-44)
[13]Barton L,Tomei F.Characteristics and activities of sulfate re-ducing bacteria[A].Sulfate-Reducing Bacteria Plenum Press[C].NewYork,1995
[14]Zhang X L,Chen Z X,Liu H H,et al.Effect of environmentfactors on the growth of sulfate reducing bactria[J].J.Chin.Soc.Corros.Prot.,2000,20(4):224-229(张小里,陈志昕,刘海洪等.环境因素对SRB生长的影响[J].中国腐蚀与防护学报,2000,20(4):224-229)
[15]Mori T,Nonaka T,Tazaki K,et al.Interactions of nutrients,mois-ture and p H on microbial corrosion of concrete sewer pipes[J].Water Res.,1992,26(1):29-37
[16]Webster M T,Loehr R C.Long-term leaching of metals from con-crete products[J].J.Environ.Eng.,1996,122:714-721
[17]Wang Y S,Hu W J.The H2S problem of sewer pipe and its controlmeasuerment[J].Shandong Eviron.,1996,(5-6):24-25(王以森,胡望均.污水管道硫化氢问题及其控制对策[J].山东环境,1996,(5-6):24-25)
[18]Gu J D,Ford T E.,Berke N S,et al.Biodeterioration of con-crete by the fungus fusarium[J].Inter.Biodeterior.Biodegrad.,1998,41:101-109
[19]Nica D,Davis J L,Kirby L,et al.Isolation and characterizationof microorganisms involved in the biodeterioration of concrete insewers[J].Inter.Biodeterior.Biodegrad.2000,46:61-68
[20]Suk K C,Mori T.A newly isolated fungus participates in the cor-rosion of concrete sewerpipes[J].Water Sci.Technic,1995,31(7):263-271
[21]Morton R L,Yanko W A,Grahom D W,et al.Relationship be-木焱tween metal concentrations and crown corrosion in Los Angeles County sewers[J].Res.J.Water Pollut.Control Fed.,1991,(63):789-798
[22]Lee W,Characklis W G.Corrosion of mild steel under anarobicbiofilm[J].Corrosion,1993,49(3):186-198
[23]Attiogbe E K,Rizkalla S H.Response of concrete to sulfuric acidattack[J].ACI Mater.J.,1988,84(6):481-488
[24]Wafa F F.Accelerated sulfate attack on concrete in a hot climate[J].Cem.Concr.Aggregates,1994,16(1):31-35
[25]Cohen M D,Mather B.Sulfate attack on concrete research needs[J].ACI Mater.J.,1991,88(1):62-69
[26]Torii K,Kawamura M.Effects of fly ash and silica fume on theresistance of mortar to sulfuric acid and sulfate attack[J].Cem.Concr.Res.,1994,24(2):361-370
[27]Davis J L,Nica D,Shields K,et al.Analysis of concrete from cor-roded sewer pipe[J].Inter.Biodeterior.Biodegrad.,1998,42:75-84
[28]He H Z,Lu S H.Study on the resistance of fly ash concrete tocorrosion by city sewage[J].J.Build.Mater.,1999,2(4):314-318(贺鸿珠,陆善后.掺粉煤灰混凝土耐城市污水侵蚀性能的研究[J].建筑材料学报,1999,2(4):314-318)
[29]Elke Vincke,Ellen Van Wanseele,Joke Monteny.Influence ofpolymer addition on thiobacilli attack of concrete[J].Inter.Biodeterior.Biodegrad.,2002,49:283-292
[30]Monteny J,Belie N D,Vincke E.Chemical and microbiologicaltests to simulate sulfuric acid corrosion of polymer-modified con-crete[J].Cem.Concr.Res.,2001,31:1359-1365
[31]Hormann K,Hofmann F,Schmidt M.Stability of concrete againstthiobacilli corrosion,a new method for determination[A].Proceed-ings of the 10th International Congress on the Chemistry of Cement[C].Gothenburg,1997
[32]Mechelen A C A,Polder R B.Rioleringen(XI),biogene zwavelzu-uraantasting,overflag van eon vervolgonderzoek in Rotterdam[J].Cem.,1991,(2):26-30
[33]Ramakrishnan V,Bang S S,Deo K S.A novel technique for re-pairing cracks in high performance concrete using bacteria[A].Proceeding of the International Conference on High Performance,High Strength Concrete[C].Perth,1998
[34]Ghosh P,Mandal S,Chattopadhyay B D,et al.Use of microor-ganism to improve the strength of cement mortar[J].Cem.Concr.Res.,2005,35:1980-1983
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.