Please wait a minute...
中国腐蚀与防护学报  2006, Vol. 26 Issue (5): 257-262     
  研究报告 本期目录 | 过刊浏览 |
基于护环技术的混凝土中钢筋腐蚀监测研究
丁元力;董泽华;周华林
华中科技大学
STUDY ON FIELD CORROSION MONITORING OF REBAR IN CONCRETE BY GUARD RING METHOD
;;
华中科技大学
全文: PDF(333 KB)  
摘要: 本文研究了采用护环电极(Guard Ring Electrode, GRE, GE)测量方法,探讨辅助电极CE、护环电极GE在钢筋极化过程中的电流分配比,以及护环电极补偿电流的大小对正确测量研究区域内的钢筋极化电阻Rp的影响。发现为获得较准确的极化电阻Rp值,即要将极化电流限制在辅助电极CE的投影面积上,仅仅考虑到二维表面的电流(电位差)补偿是不够的,对于高阻混凝土(钝态钢筋)体系,简单的表面电流补偿导致测量的Rp值偏小,只有考虑到混凝土结构中三维空间的电流补偿,才可能得到正确的Rp值。实验中将测量结果与均匀极化测量结果进行了对比,表明,对于活化态的钢筋混凝土体系,采用护环电极能够较好地将极化电流限制在工作区域内,从而可对钢筋混凝土体系进行准确的腐蚀测量。
关键词 护环电极均匀极化钢筋混凝土腐蚀限制    
Abstract:In this paper Guard Ring Electrode was applied to study corrosion behavior of rebars in concrete. The current ratio of Counter Electrode (CE) and Guard Ring Electrode(GE) had been discussed during rebars were polarized. Furthermore, we discussed the effect of GE current for the sake of obtaining accurate polarization resistance Rp value. In order to achieve real Rp value, CE current must be confined in the projection rebar area below CE. During the experiment, the potential difference of concrete surface was monitored at the same time. However, it is insufficient considering only two-dimension current distribution. Generally very high concrete resistance tends to result in small measuring Rp value because of the over compensation of CE current. In order to obtain real Rp value, three-dimension other than two-dimension current distribution must be considered. Compared with uniform polarization result, it can be seen when rebars was active, CE polarization current could be confined preferably in the constant rebars area below CE by GEM, indicating the GEM could be used to monitor the corrosion behavior of rebars in concrete more accurately than other custom LPR method.
Key wordsGE    uniform polarization    reinforced concrete    corrosion    confinement
收稿日期: 2005-07-07     
ZTFLH:  TU201  
通讯作者: 丁元力     E-mail: dyl_wh@163.com

引用本文:

丁元力; 董泽华; 周华林 . 基于护环技术的混凝土中钢筋腐蚀监测研究[J]. 中国腐蚀与防护学报, 2006, 26(5): 257-262 .

链接本文:

https://www.jcscp.org/CN/Y2006/V26/I5/257

[1]Montemor M F,Simoes A M P,Ferreira M G S.Chloride-inducedcorrosion on reinforcing steel:from the fundamentals to the moni-toring techniques[J].Cement and Concrete Composites,2003,25(4-5 SPEC):491-502
[2]Feliu S,Gonzalez J A.Determining polarization resistance in rein-forced concrete slabs[J].Corros.Sci.,1989,29(1):105-113
[3]Law D W,Millard S G,Bungey J H.Linear polarization resistancemeasurements using a potentiostatically controlled guard ring[J].NDT and E International,2000,33(1):15-21
[4]Sehgal A L D,Kho Y T,Osseo-Asare K,et al.Reproducibility ofpolarization resistance measurements in steel-in-concrete systems[J].Corrosion,1992,48(9):706-714
[5]Wojtas H.Determination of polarization resistance of reinforcementwith a sensorized guard ring:analysis of errors[J].Corrosion,2004,60(4):414-420
[6]Stern M,Geary A L.Electrochemical polarization I.A theoreticalanalysis of the shape of polarization curves[J].J.Electrochem.Soc.,1957,104(1):56-63
[7]Alonso C,Andrade A,Gonzalez J A.Relation between resistivityand corrosion rate of reinforcements in carbonated mortar madewith several cement types[J].Cement Concrete Res,1988,8:687-698
[8]Feliu S,Gonzalez J A,Andrade C.Effect of current distribution oncorrosion rate measurements in reinforced concrete[J].Corrosion(Houston),1995,51(1):79-86
[9]Wojtas H.Determination of corrosion rate of reinforcement with amodulated guard ring electrode:analysis of errors due to lateral cur-rent distribution[J].Corros.Sci.,2004,46(7):1621-1632
[10]Song G L.Theoretical analysis of the measurement of polarizationresistance in reinforced concrete[J].Cement&Concrete Compos-ites,2000,22(6):407-415
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.