Please wait a minute...
中国腐蚀与防护学报  2006, Vol. 26 Issue (2): 109-114     
  研究报告 本期目录 | 过刊浏览 |
纳米TiO2-SnO2复合薄膜的光生阴极保护作用及机理研究
沈广霞;陈艺聪;林昌健
厦门大学化学系
Studies of Mechanism on Photogenerated Cathodic Protection of the TiO2-SnO2 Composite Films
;;Changjian Lin
厦门大学化学系
全文: PDF(220 KB)  
摘要: 用溶胶-凝胶法和旋转涂膜技术在导电玻璃(ITO)表面构筑纳米TiO2膜和纳米TiO2-SnO 2复合膜,应用AFM、XRD对膜的形貌及晶体结构进行表征.用光电化学和腐蚀电化学相结合技 术,通过测试时间—电位曲线和交流阻抗谱研究光生阴极保护状态下316L不锈钢电极在05 mol/L NaCl溶液中的微观界面电荷分布及电子传递规律,探讨光生阴极保护的作用机理.结果表明以TiO2—SnO2复合膜作为光生阳极时,在紫外光照下,316L不锈钢电极可 处 在阴极保护状态,并且在切断光源后,光生电极电位仍可在较长的一段时间内维持在-02 V左右,仍具有一定的阴极保护作用.
关键词 纳米TiO2-SnO2复合膜光生阴极保护    
Abstract:By the sol-gel method and spin-coating process,the nano TiO2-SnO2 composite films have been prepared on the surface of the indi um-tin oxide(ITO)glass and 316L stainless steel.The morphology and crystalline s tructure have been characterized by AFM and XRD.The anticorrosion property of th e composite coatings has been studied under dark condition by electrochemical me thods.Similarly,the performance of photogenerated cathodic protection of the com posite coatings has been measured in 0.5 mol/L NaCl solution(pH=46)by combinin g photoelectrochemical system with corrosion electrochemical system under UV illu mination.The results show that in dark the nano TiO2-SnO2 composite films ha ve a poorer anticorrosion property than that of the nano TiO2 coatings.Under U V illumination condition the composite films as a photoanode provide a cathodic protection for 316L,and when the UV light is shut off,its photogenerated potenti al can remain a cathodic protection of metal for 6 hours.The mechanism of the ph otogenerated cathodic protection has also been studied by electrochemical impeda nce spectra.
Key wordsnano TiO2-SnO2 composite film    photogenerated catho dic protection    corrosion    mechanism
收稿日期: 2004-08-17     
ZTFLH:  B030602  
通讯作者: 沈广霞      E-mail: sgxlq@163.com

引用本文:

沈广霞; 陈艺聪; 林昌健 . 纳米TiO2-SnO2复合薄膜的光生阴极保护作用及机理研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 109-114 .
Changjian Lin. Studies of Mechanism on Photogenerated Cathodic Protection of the TiO2-SnO2 Composite Films. J Chin Soc Corr Pro, 2006, 26(2): 109-114 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2006/V26/I2/109

[1]Rdgan O,Gratzel M.A low-cost-efficiency solar cell based ondye-sensitized colloidal TiO2[J].Nature,1991,737-739
[2]Peiro A M,Peral J,Domingo C,et al.Low-temperature deposi-tion of TiO2thin films with photocatalytic activity from colloidalanatase aqueous solutions[J].Chem.Mater.,2001,13:2567-2573
[3]Vinodgopal K,Hotchandani S,Kamat P V.Electrochemically as-sisted photocatalysis:titania particulate film electrodes for photo-catalytic degradation of 4-chlorophenol[J].J.Phys.Chem.,1993,97:9040-9044
[4]Nakajima A,Hashimoto K,Watanabe T.Transparent superhy-drophobic thin films with self-cleaning properties[J].Langmuir,2000,16:7044-7047
[5]Park H,Kim K Y,Choi W.A novel photoelectrochemical methodof metal corrosion using a TiO2solar panel[J].Chem.Commun.,2001,14:281-282
[6]Ohko Y,Saitoh S,Tatsuma S,et al.Photoelectrochemical anticor-rosion and self-cleaning effects of a TiO2coating for type 304stainless steel[J].J.Electrochem.Soc.,2001,148(1):B24-B28
[7]Park H,Kim K Y,Choi W.Photoelectrochemical approach formetal corrosion prevention using a semiconductor photoanode[J].J.Phys.Chem.B,2002,106:4775-4781
[8]Kang M,Choung S J,Park J Y.Photocatalytic performance ofnanometer-sized FexOy/TiO2particle synthesized by hydrother-mal method[J].Catalysis Today,2003,87(1-4):87-97
[9]Tatsuma T,Satioh S,Ngaotra K,et al.Energy storage of TiO2-WO3photocatalysis system with an energy in the gas phase[J].Langmuir,2002,18:7777-7779
[10]Tatsuma T,Satioh S,Ohko Y,et al.TiO2-WO3photoelec-trochemical anticorrosion system with an energy storage ability[J].Chem.Mater.,2001,13:2838-2842
[11]Liu Z Y,Pan K,Wang M J,et al.Influence of the mixed ratio onthe photocurrent of the TiO2/SnO2composite photoelectrodes sen-sitized by mercurochrome[J].J.Photochem.Photobio.A:Chem.,2003,157:39-46
[12]Shen G X,Chen C Y,Lin C J.Formation and characterization ofwater-repellent nano TiO2coatings and studying its anticorrosionproperty[J].Electrochemistry(Chinese),2004,10:65-69
[13]Raghavan S,Shinohara T.Investigations on SnO2-TiO2compos-ite photoelectrodes for corrosion protection[J].Electrochem.Com-mun.,2003,5:897-907
[14]Vinodgopal K,Bedja I,Kamat P V.Nanostructured semiconductorfilm for photocatalysis.Photoelectrochemical behavior of SnO2/TiO2composite system and its role in photocatalytic degradation ofa textile azo dye[J].Chem.Mater.,1996,8:2180-2187
[15]Boukamp B.Equivalent Circuit Users Manual and Software(Ver.4.51)University of Twente the Netherlands.2nd[M].Amsterd-cur:Twente Preston Company,1993
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.