Please wait a minute...
中国腐蚀与防护学报  2004, Vol. 24 Issue (6): 372-375     
  研究报告 本期目录 | 过刊浏览 |
电脉冲对不锈钢形变马氏体及其耐蚀性的影响
李志林
北京化工大学材料学院
Effect of Electric Pulse on the Deformation Martensite and Corrosion Resistance of Stainless Steels
Zhilin Li
北京化工大学材料学院
全文: PDF(143 KB)  
摘要: 亚稳奥氏体不锈钢冷变形后产生形变诱发马氏体,影响其物理和化学性能。对打磨后的亚稳奥氏体不锈钢进行了阳极60s-280s+阴极30s-280s,9h电脉冲处理。用X射线衍射分析、显微硬度测量、自腐蚀电位测量和金相分析等方法分析处理前后的马氏体含量、表面硬度、耐腐蚀性。结果表明处理后表面马氏体均减少。随脉冲宽度的不同,电脉冲处理可以诱发电化学退火,也可以导致马氏体优先腐蚀。当发生电化学诱导退火时,不锈钢不仅在马氏体减少后信可以保持高硬度,而且在含Cl-介质中的耐蚀性也提高。
关键词 电化学诱导退火不锈钢形变马氏体耐蚀性    
Abstract:The deformation induced martensite in metastable austenite stainless steels effects their physical and chemical properties. Worn metastable austenite stainless steel was treated with electric pulse of anode 60s-280s + cathode 30s-280s for 9h. XRD analyge, microhardness test, corrosion potential test and metallographic observation were used to analyze the amount of martensite , surface hardness and corrosion resistance before and after the treatment. The results show that the amount of martensite always decreases after the treatment. According to the various pulse width, the treatment can induce electrochemical annealing, it can also cause the priority corrosion of martensite. When electrochemically induced annealing happens, the treatment can not only keep the high hardness after the amount of martensite decreases, but also promote the corroson resistance of the stainless steel in Cl- containing solution.
Key wordselectrochemically induced annealing    stainless steel    deformation martensite    corrosion resistance
收稿日期: 2003-06-04     
ZTFLH:  TG171  
通讯作者: 李志林   
Corresponding author: Zhilin Li   

引用本文:

李志林 . 电脉冲对不锈钢形变马氏体及其耐蚀性的影响[J]. 中国腐蚀与防护学报, 2004, 24(6): 372-375 .
Zhilin Li. Effect of Electric Pulse on the Deformation Martensite and Corrosion Resistance of Stainless Steels. J Chin Soc Corr Pro, 2004, 24(6): 372-375 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2004/V24/I6/372

[1]CigadaA ,MazzaB ,PedeferriP ,etal.Stresscorrosioncrackingofcold-workingaustenitestainlesssteels[J].Corros.Sci.,1982,22(6):558-578
[2]KamideHidehiko.Effectofcarboncontentondissolutionrateofαprimemartensiteand304stainlesssteelinaH2SO(1):47-52[J].J .JapanInstituteofMetals,1994,58(12):414-419
[3]FangZ ,WuYS .Effectofdeformationinducedmartensitetransfor mationontheelectrochemicalbehaviorof304stainlesssteelunderactivestate[J].Corros.Sci.Prot.Technol.,1997,9(1):75-78(方智,吴荫顺.形变诱发马氏体相变对304不锈钢在活化状态下的电化学行为的影响[J].腐蚀科学与防护技术,1997,9(1):75-78)
[4]XuCC ,HKe,WuYX ,etal.Transformationruleofdeformationinducedmartensiteanditsinfluenceonthepittingsensibilityof1Cr18Ni9Tistainlesssteel[J].J.Chin.Soc.Corros.Prot.,1996,16(1):47-52(许淳淳,何珂,吴永火斤等.1Cr18Ni9Ti不锈钢形变诱发马氏体相变规律及其对孔蚀敏感性的影响[J].中国腐蚀与防护学报,1996,16(1):47-52)
[5]HuG ,XuCC ,ZhangXS ,etal.Influenceofcoldworkingonpittingsensibilityof304stainlesssteel[J].J.Chin.Soc.Corros.Prot.,2002,22(4):198-201(胡钢,许淳淳,张新生等.冷加工对304不锈钢孔蚀敏感性的影响[J].中国腐蚀与防护学报,2002,22(4):198-201)
[6]ShaoGJ,WangYL ,WangAR ,etal.Correlationbetweenthepit tingsensibilityandferromagnetic phasecontentofmetastableaustenitesteel[J].IronandSteel,1996,31(4):48-52(邵光杰,王玉林,王爱荣等.亚稳态奥氏体不锈钢孔蚀敏感性与铁磁相含量相关性[J].钢铁,1996,31(4):48-52)
[7]XuRF ,XuCC ,XueHY ,etal.Researchonthecorrelationbe tweenthemartensitecontentandpittingsensibilityof1Cr18Ni9Tistainlesssteel[J].Corros.Sci.Prot.Technol..1998,10(4):197-201(徐瑞芬,许淳淳,薛慧勇等.1Cr18Ni9Ti不锈钢的马氏体相变量与孔蚀敏感性的相关性研究[J].腐蚀科学与防护技术,1998,10(4):197-201)
[8]XuCC ,XuRF ,OuyangWZ ,etal.Researchonthepittingsensi bilityof1Cr18Ni9TistainlesssteelafterdeformationinducedmartensitetransformationinacidsolutionwithACresistancemethod[J].Corros.Sci.Prot.Technol,1997,9(2):95-102(许淳淳,徐瑞芬,欧阳维真等.用交流阻抗法研究形变诱发马氏体相变的1Cr18Ni9Ti不锈钢在酸性NaCl溶液中的孔蚀敏感性[J].腐蚀科学与防护技术,1997,9(2):95-102)
[9]XuRF ,XuCC ,OuyangWZ ,etal.Effectofmartensitetransfor mationoncorrosionresistanceofaustenitestainlesssteel[J].J.Bei jingUniv.Chem.Technol.,1998,25(2):57-63(徐瑞芬,许淳淳,欧阳维真等.奥氏体不锈钢的马氏体相变对耐蚀性的影响[J].北京化工大学学报.1998,25(2):57-63)
[10]XuCC ,OuyangWZ ,JiangBW ,etal.Effectofdeformationin ducedmartensiteontheSCCof1Cr18Ni9Tistainlesssteel[J].Corros.Sci.Prot.Technol.,1996,8(4):267-270(许淳淳,欧阳维真,姜宝文等.形变诱发马氏体对1Cr18Ni9Ti不锈钢应力腐蚀破裂的影响[J].腐蚀科学与防护技术,1996,8(4):267-270)
[11]XuCC ,OuyangWZ ,XuRF ,etal.CorrelationbetweentheSCCsensibilityandferromagneticphasecontentof1Cr18Ni9Tistain lesssteelinchloridesolution[J].J.Chin.Soc.Corros.Prot.,1997,17(1):73-76(许淳淳,欧阳维真,徐瑞芬等.1Cr18Ni9Ti不锈钢在氯化物溶液中SCC敏感性与铁磁相含量的相关性[J].中国腐蚀与防护学报,1997,17(1):73-76)
[12]DiSchinoA ,SalvatoriI ,KennyJM .Effectsofmartensiteforma tionandaustenitereversionongrainrefiningofAISI 304stainlesssteel[J].J.Mater.Sci.,2002,37:4561-4565
[13]ZhangY ,JingXT ,LouBZ ,etal.Mechanismandreversiblebe havioroftheα′→γtransformationin1Cr18Ni9Tistainlesssteel[J].J.Mater.Sci.,1999,34:3291-3296
[14]BursteinGT ,HutchingsIM ,SasakiK .Electrochemicallyinducedannealingofstainless-steelsurfaces[J].Nature,2000,407:885~887
[15]NaritaN ,AlltstterCJ ,BirnbaumHK .Hydrogen-relatedphasetransformationsinausteniticstainlesssteels[J].Metall.Trans.A ,1982,13A ,1355~1365
[16]BentleyAP ,SmithGC .Phasetransformationofausteniticstain lesssteelsasaresultofcathodichydrogencharging[J].Metall.Trans.A ,1986,17A :1593~1600
[17]OkadaH ,HosoiY ,AbeS .Formationofcracksinausteniticstain lesssteelscathodicallychargedwithhydrogen[J].Corrosion,1970,26:183-186
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[9] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[11] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[12] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[13] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[15] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.