Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 585-591    DOI: 10.11902/1005.4537.2019.087
  研究报告 本期目录 | 过刊浏览 |
恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究
包任1, 周根树1(), 李宏伟2
1.西安交通大学 金属材料强度国家重点实验室 西安 710049
2.神华神东煤炭集团公司设备维修中心 神木 719315
Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition
BAO Ren1, ZHOU Genshu1(), LI Hongwei2
1. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2. Equipment Maintenance Center, Shenhua Shenmu Coal Group Company, Shenmu 719315, China
全文: PDF(6205 KB)   HTML
摘要: 

针对所提出的恒电位脉冲电沉积铜锡技术,研究工艺条件对镀层成分、晶粒尺寸及耐蚀性能的影响规律,摸索恒电位脉冲电沉积高锡青铜的最优工艺。利用SEM观察分析恒电位脉冲与恒电流脉冲电沉积铜锡镀层的形貌及晶粒尺寸,结合EDS分析电沉积方式对镀层成分分布的影响规律,使用电化学工作站表征镀层的耐蚀性。结果表明,使用占空比33%、沉积电位3 V的恒电位脉冲电沉积工艺,降低了镀层溶解几率而维持络合离子迁移、沉积驱动力,因而对不同尺寸零件均可稳定获得高锡青铜镀层。相同初始条件下,恒电流脉冲镀层平均厚度约6 μm;而恒电位脉冲具有更大的沉积速率,膜层厚度在10 μm以上,且镀层成分比恒电流脉冲镀层更均匀、孔隙率低、晶粒团簇少、耐蚀性能优良,在截面积为78.5 mm2的试样上镀层阻抗较恒电流脉冲提高了两倍。恒电位脉冲还可获得纳米Cu-Sn镀层,晶粒尺寸小于100 nm。相对恒电流脉冲,恒电位脉冲电沉积提高了铜锡镀层质量及耐蚀性,且有利于复杂零件的成分控制及自动化生产。

关键词 高锡青铜恒电位脉冲恒电流脉冲电沉积耐蚀性    
Abstract

Aiming at the proposed potentiostatic pulse electrodeposition of Cu-Sn alloy, the influence of process parameters on the composition, grain size and corrosion resistance of prepared coatings is studied. The morphology, grain size, chemical composition and corrosion behavior of the Cu-Sn coatings electrodeposited by potentiostatic pulse technology or constant-current pulse technology are characterized by means of scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and electrochemical workstation. It is found that potentiostatic pulse process of Cu-Sn electroplating with the duty ratio of 33% and potential of 3 V could reduce the dissolution probability of the plating layer and maintained the complex ion migration and deposition driving force, so that the high-tin bronze coating can be obtained on parts of different size. The grain size of the coating on the part with surface area 78.5 mm2 is less than 100 nm. Under the same initial conditions, the electrodeposition rate of the potentiostatic pulse technology is faster than that of the constant current pulse technology, besides the plated alloy presents much better composition uniformity and the formed coating possesses only few of pores and crystallite clusters, therefore the coating exhibits corrosion resistance 2 times higher than that made by constant-current pulse. Compared with the constant current pulse technology, the potentiostatic pulse electrodeposition is beneficial to improve the quality and corrosion resistance of copper-tin plating and which may facilitate the introduction of processing automation or composition control for complex parts as well.

Key wordshigh-tin bronze    potentiostatic pulse    constant-current pulse    electrodeposition    corrosion resistance
收稿日期: 2019-06-20     
ZTFLH:  TQ153.2  
基金资助:西安市科技创新计划(201805064ZD15CG48)
通讯作者: 周根树     E-mail: zhougs@xjtu.edu.cn
Corresponding author: ZHOU Genshu     E-mail: zhougs@xjtu.edu.cn
作者简介: 包任,男,1993年生,硕士生

引用本文:

包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
Ren BAO, Genshu ZHOU, Hongwei LI. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 585-591.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.087      或      https://www.jcscp.org/CN/Y2020/V40/I6/585

图1  脉冲电沉积工艺示意图
图2  不同截面尺寸试样上脉冲方式电沉积膜层的SEM像
图3  不同截面尺寸试样上不同脉冲方式电沉积膜层的线扫描分析结果
SampleMass of Sn in the coating / mgMass of copper in the coating / mgPercent of Sn in the coating / %
Constant-current pulseS=78.5 mm21.220.9655.9
S=270 mm22.864.7737.5
Potentiostatic pulseS=78.5 mm22.252.1151.7
S=270 mm27.038.2346.1
表1  不同截面尺寸试样上不同脉冲方式电沉积膜层中的Sn含量
SampleThickness of the first point / μmThickness of the second point / μmThickness of the third point / μmAverage thickness / μm
Constant-current pulseS=78.5 mm26.16.46.26.2
S=270 mm26.96.35.66.3
Potentiostatic pulseS=78.5 mm210.710.311.210.7
S=270 mm211.112.311.811.7
表2  不同截面尺寸试样上脉冲方式电沉积镀层的厚度
图4  不同脉冲方式制备镀层的截面微观形貌
图5  试样B及其在不同脉冲方式沉积镀层的Bode图
图6  试样A及其在不同脉冲方式沉积镀层的Bode图
图7  恒电位脉冲电沉积镀层的开路电位
[1] Zheng L, Luo S, Li Z H, et al. Preparation of new copper-tin alloy electroplating additives [J]. Surf. Technol., 2018, 47(9): 214
[1] (郑丽, 罗松, 李祉豪等. 新型铜锡合金电镀添加剂的制备 [J]. 表面技术, 2018, 47(9): 214)
[2] Li M. Determination of pyrophosphate in copper-tin alloy plating bath [J]. Surf. Technol., 1991, 3(1): 48, 47
[2] (李明. 铜锡合金电镀液中焦磷酸根的测定 [J]. 表面技术, 1991, 3(1): 48, 47)
[3] Correia A N, Façanha M X, De Lima-Neto P. Cu-Sn coatings obtained from pyrophosphate-based electrolytes [J]. Surf. Coat. Technol., 2007, 201: 7216
[4] Yamamoto T, Nohira T, Hagiwara R, et al. Improved cyclability of Sn-Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte [J]. Electrochim. Acta, 2014, 135: 60
[5] Guo C W. Process for electroplating white copper-tin alloy with electroplated zinc-nickel alloy coating as a bottom layer [J]. Electroplat. Plat., 2018, 37: 536
[5] (郭崇武. 以镀酸性锌镍合金作为底层的电镀白铜锡工艺 [J]. 电镀与涂饰, 2018, 37: 536)
[6] Jiang T D, Zeng Z O, Xu J L, et al. Process of white copper-tin alloy electroplating with pyrophosphate bath [J]. Electroplat. Plat., 2011, 30(1): 1
[6] (姜腾达, 曾振欧, 徐金来等. 焦磷酸盐溶液体系电镀白铜锡工艺 [J]. 电镀与涂饰, 2011, 30(1): 1)
[7] Carlos I A, Bidoia E D, Pallone E M J A, et al. Effect of tartrate content on aging and deposition condition of copper-tin electrodeposits from a non-cyanide acid bath [J]. Surf. Coat. Technol., 2002, 157: 14
doi: 10.1016/S0257-8972(02)00139-1
[8] Stichleutner S, Lak G B, Kuzmann E, et al. Mössbauer and XRD study of pulse plated Sn-Fe, Sn-Ni and Sn-Ni-Fe electrodeposited alloys [J]. Hyperfine Interact., 2014, 226: 15
[9] Syrett B C, Parkins R N. The effect of Sn and As on the stress corrosion of Cu-Zn alloys [J]. Corros. Sci., 1970, 10: 197
[10] Wu K. Study on pulse electrodeposition and properties of mutiple Cu-Sn based composite coatings [D]. Harbin: Harbin Engineering University, 2016
[10] (吴珂. 脉冲电沉积多元Cu-Sn基复合镀层的制备及性能研究 [D]. 哈尔滨: 哈尔滨工程大学, 2016)
[11] Li F Y, Cheng X B, Yu D R. Effect of electroplating parameters on hydrogen permeation of electroplated copper-Tin coatings [J]. Mater. Prot., 2013, 46(5): 36
[11] (李福永, 程相榜, 于德润. 电镀工艺对铜锡合金镀层渗氢的影响 [J]. 材料保护, 2013, 46(5): 36)
[12] Wu L, Cobley A J. Effect of the use of pulse plating techniques in electrodeposited Sn-Cu coatings for Pb-free, environmentally-friendly applications [A]. 231th ECS Meeting [C]. New Orleans: 2017
[13] TechnologyGroup, 519 Factory, State Administration of Telecommunications. Application of potentiostat in electroplating production [J]. Mater. Prot., 1976, 4(1): 26
[13] (电信总局519厂工艺组. 恒电位仪在电镀生产中的应用 [J]. 材料保护,1976, 4(1): 26)
[14] Gong Z Q, Deng S H, Chen W M. Pulse electrodeposition of nanocrystalline nickel-iron-chromium alloy (Ⅰ)-Techniques of electrodeposition [J]. Chin. J. Nonferrous Met., 2003, 6: 511
[14] (龚竹青, 邓姝皓, 陈文汨. 脉冲电沉积纳米晶镍-铁-铬合金 (Ⅰ)-电沉积工艺 [J]. 中国有色金属学报, 2003, 6: 511)
[15] Jin B K, Wang S J, Zhang Z P. Fabrication and characterization of Ag nanoparticles modified electrode [J]. J. Anhui Univ. (Nat. Sci. Ed.), 2005, 29(5): 71
[15] (金葆康, 王世君, 张自品. 纳米银修饰电极的制备及表征 [J]. 安徽大学学报 (自然科学版), 2005, 29(5): 71)
[16] Lu C M. Study on the pore size and electrochemical properties of three-dimensional network structure Mn-based oxide [D]. Nanchang: Nanchang Hangkong University, 2015
[16] (卢春民. 三维纳米网状Mn基氧化物的孔径及其电化学性能研究 [D]. 南昌: 南昌航空大学, 2015)
[17] Zheng X C, Kang J F, Li T, et al. Electrochemical deposition and magnetic properties of Co-Ni alloys [J]. J. Xinyang Normal Univ. (Nat. Sci. Ed.), 2011, 24: 380
[17] (郑修成, 康进峰, 李腾等. 电化学沉积法制备Co-Ni合金及其磁性能研究 [J]. 信阳师范学院学报 (自然科学版), 2011, 24: 380)
[18] Chu R B, Guan C L, Chu C J. Process for electroplating of copper in pyrophosphate bath [J]. Mater. Prot., 2006, 39(10): 58
[18] (储荣邦, 关春丽, 储春娟. 焦磷酸盐镀铜生产工艺 (I) [J]. 材料保护, 2006, 39(10): 58)
[19] Feng B. Process and kinetics of low-tin copper-tin alloy electroplating from pyrophosphate aqueous electrolyte [D]. Guangzhou: South China University of Technology, 2013
[19] (冯冰. 焦磷酸盐溶液体系滚镀低锡铜—锡合金 (黄青铜) 工艺及电沉积动力学 [D]. 广州: 华南理工大学, 2013)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[3] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[6] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[8] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[13] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[14] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[15] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.