Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 251-258    DOI: 10.11902/1005.4537.2019.069
  研究报告 本期目录 | 过刊浏览 |
5083铝合金表面单致密微弧氧化膜的制备及其性能研究
曹京宜1,2, 方志刚1, 陈晋辉3, 陈志雄3, 殷文昌1, 杨延格1,2,4, 张伟4()
1 中国人民解放军92228部队 北京 100072
2 海军研究院博士后科研工作站 北京 100073
3 福建龙溪轴承 (集团) 股份有限公司 漳州 363000
4 中国科学院金属研究所 金属腐蚀与防护实验室 沈阳 110016
Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy
CAO Jingyi1,2, FANG Zhigang1, CHEN Jinhui3, CHEN Zhixiong3, YIN Wenchang1, YANG Yange1,2,4, ZHANG Wei4()
1 Unit 92228, People's Liberation Army, Beijing 100072, China
2 Postdoctoral Research Station of Naval Research Academy, Beijing 100073, China
3 Fujian LongXi Bearing (Group) Corp. , LTD, Zhangzhou 363000, China
4 Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(5693 KB)   HTML
摘要: 

采用响应曲面法对微弧氧化电解液体系进行了优化,并在5083铝合金表面进行了单致密微弧氧化涂层的制备。通过扫描电镜、X射线衍射仪、显微硬度计和极化曲线对铝合金微弧氧化膜的微观组织、显微硬度和耐蚀性进行了研究。结果表明:随着微弧氧化膜层厚度从30 μm增加到90 μm,烧结颗粒的尺寸从约为10 μm增加到约为50 μm,致密层由最初的20 μm增加到70 μm,陶瓷膜层中α-Al2O3的比例明显增加,涂层的硬度由900 HV提高到1500 HV。依据极化曲线和盐雾实验结果发现:随着微弧氧化时间的增加,微弧氧化膜的自腐蚀电流密度逐渐降低,钝化能力逐渐增强,膜层的耐腐蚀性能大幅度提高。

关键词 铝合金微弧氧化单致密层耐蚀性    
Abstract

Marine Al-alloy 5083 owns low density, good weldability and high hardness, but it is easily suffered from pitting corrosion in sea water due to the effect of Cl-. Micro-arc oxidation (MAO) is an effective way to improve the corrosion resistance of Al-alloy. In the present study the electrolyte formula was optimized via response surface methodology so that to acquire a novel MAO coating on Al-alloy 5083, which composed of merely a dense layer. The prepare MAO coating was then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-hardness meter and dynamic polarization technology in terms of microstructure, micro-hardness and corrosion resistance. Results showed that in comparison with the coating prepared with the ordinary electrolyte, the thickness of the MAO coating increases from 30 μm to 90 μm, size of the sintered particles on MAO coating grown from 10 μm to 50 μm, and the thickness of the dense layer increased from 20 μm to 70 μm, accompanied by the increase of the percentage of α-Al2O3 in the MAO coating as well. The hardness of the polished MAO coating increased from 900 HV to 1500 HV. Polarization curve and salt frog test results also found that with the increasing of micro-arc oxidation time, the corrosion current density of MAO coating was gradually decreased, while its passivation ability was enhanced. Therefore, corrosion resistance of Al-alloy 5083 was increased substantially in the presence of the MAO coating composed merely of a thick dense layer.

Key wordsaluminum alloy    micro-arc oxidation    single dense layer    corrosion resistance
收稿日期: 2019-06-01     
ZTFLH:  TG174  
通讯作者: 张伟     E-mail: weizhang@imr.ac.cn
Corresponding author: ZHANG Wei     E-mail: weizhang@imr.ac.cn
作者简介: 曹京宜,女,1972年生,研究员

引用本文:

曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
Jingyi CAO, Zhigang FANG, Jinhui CHEN, Zhixiong CHEN, Wenchang YIN, Yange YANG, Wei ZHANG. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 251-258.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.069      或      https://www.jcscp.org/CN/Y2020/V40/I3/251

Solution / g·L-1Level
-10+1
Na2SiO3203550
Na2C2O451015
NaF258
表1  实验因素及水平
RunFactorZ / Ω·cm2Icorr / μA·cm-2P / %
ABC
1-1105.82×1060.48338.7
2-10-11.82×1060.75933.8
30-1-12.24×1060.61329.1
4+1-109.47×1070.0117.7
50002.40×1080.0032.4
60+1+11.84×1070.62829.3
7-10+12.23×1080.0043.2
8+1+103.26×1080.0033.9
9+10-14.20×1060.34927.4
100001.83×1060.62531.4
110-1+12.83×1060.44327.7
12+10+15.12×1060.31622.3
130+1-19.59×1060.03011.7
14-1-103.18×1070.0678.8
150000.90×1060.83542.2
表2  实验方案设计及相应实验结果
图1  氧化膜电阻值的三维曲面分析
图2  自腐蚀电流的三维曲面分析
图3  氧化膜孔隙率的三维曲面分析
图4  微弧氧化膜的表面和截面形貌
图5  不同氧化时间的微弧氧化膜的XRD谱
Sample12345Average
Substrate75.670.780.673.779.476
3 h9339129258791018933
4 h10471164103711949841085
5 h152515211346139015781472
表3  不同厚度微弧氧化膜的硬度值
图6  不同厚度微弧氧化膜极化曲线实验结果
Thickness / μm

Corrosion Current

A·cm-2

Corrosion potential

V

Polarization resistance

Ω·cm2

Passive Active
301.7×10-7-0.9875.4×106Active
602.1×10-9-0.7311.4×107Active
908.5×10-10-0.7756.7×108Passive
表4  极化曲线拟合结果
图7  不同厚度微弧氧化膜的盐雾实验结果
[1] Huang W F, Huang J G. Welding Guide for Aluminum and Aluminum Alloys [M]. Changsha: Hunan Science & Technology Press, 2004
[1] (黄旺福, 黄金刚. 铝及铝合金焊接指南 [M]. 长沙: 湖南科学技术出版社, 2004)
[2] Du L, Liu Y Z, Luo X, et al. Microstructure of reheated semi-solid 5083 aluminum alloy and thixo-rolling [J]. Spec. Cast. Nonferrous Alloys, 2011, 31: 1115
[2] (杜良, 刘允中, 罗霞等. 半固态5083铝合金的二次加热组织与触变轧制 [J]. 特种铸造及有色合金, 2011, 31: 1115)
[3] Qiu J, Shuai G, Ma S N, et al. Preparation and properties of local coatings on 5083 aluminum alloy by spraying micro-arc oxidation [J]. China Surf. Eng., 2015, 28(5): 105
[3] (邱骥, 帅刚, 马世宁等. 5083铝合金喷洒式微弧氧化局部膜层的制备及性能 [J]. 中国表面工程, 2015, 28(5): 105)
[4] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J]. Corros. Sci., 1999, 41: 1743
[5] Yi K Y. Preparation and wear-resisting and corrosion-resisting property of coatings on different silicon content aluminum alloy by micro arc [D]. Harbin: Harbin Institute of Technology, 2016
[5] 易奎杨. 不同硅含量铝合金微弧氧化膜层的制备及耐磨耐腐蚀性能 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[6] Van Tran B, Brown S D, Wirtz G P. Mechanism of anodic spark deposition [J]. Am. Ceram. Soc. Bull., 1977, 56: 563
[7] Zhang X Y, Shi Y L. Technique of plasma microarc oxidation and its application [J]. J. Qingdao Inst. Chem. Technol. (Nat. Sci. Ed.), 2002, 23(1): 69
[7] (张欣宇, 石玉龙. 等离子体微弧氧化技术及其应用 [J]. 青岛化工学院学报 (自然科学版), 2002, 23(1): 69)
[8] Zhuang J J, Song R G, Xiang N, et al. Corrosion behavior of micro-arc oxidation coatings formed on 6063 aluminum alloy [J]. Corros. Sci. Prot. Technol., 2017, 29: 492
[8] (庄俊杰, 宋仁国, 项南等. 6063铝合金微弧氧化膜层的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 492)
[9] Song X J, Qin D. Wear resistance of micro arc oxidated ceramic layer on cast Si-Al alloy [J]. Mater. Prot., 2000, 33(4): 51
[9] (宋希剑, 秦东. 铸造高硅铝合金表面微弧氧化陶瓷层的耐磨性 [J]. 材料保护, 2000, 33(4): 51)
[10] Wang Y K, Sheng L, Xiong R Z, et al. Effects of additives in electrolyte on characteristics of ceramic coatings formed by microarc oxidation [J]. Surf. Eng., 1999, 15: 109
doi: 10.1179/026708499101516425
[11] Wang M, Guo H Y, Li W F, et al. Effects of electrolyte concentration on the dielectric properties and microstructure of BaxSr(1-x) TiO3 films prepared by microarc oxidation [J]. J. Synth. Cryst., 2013, 42: 1584
[11] (王敏, 郭会勇, 李文芳等. 电解液浓度对BaxSr(1-x)TiO3微弧氧化膜微观结构及介电性能的影响 [J]. 人工晶体学报, 2013, 42: 1584)
[12] He Z K, Tang P S. The effects of solution systems on micro-arc anodizing ceramic films [J]. Mater. Prot., 2001, 34(11): 12
[12] (贺子凯, 唐培松. 溶液体系对微弧氧化陶瓷膜的影响 [J]. 材料保护, 2001, 34(11): 12)
[13] Saeedikhani M, Javidi M, Yazdani A. Anodizing of 2024-T3 aluminum alloy in sulfuric-boric phosphoric acids and its corrosion behavior [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2551
doi: 10.1016/S1003-6326(13)62767-3
[14] Lu C, Xie F Q, Zhu L P. Microstructure and tribological properties of microarc oxidation coatings on Al-Si alloy [J]. Key Eng. Mater., 2016, 703: 112
doi: 10.4028/www.scientific.net/KEM.703
[15] Gulbrandsen E, Taftø J, Olsen A. The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations [J]. Corros. Sci., 1993, 34: 1423
[16] Li J M, Jiang B L, Jing X T, et al. Effect of conductivity of solution on the growth rate and compact of micro-arc oxidation coating of LY12 aluminum [J]. Trans. Mat. Heat Treat., 2003, 24(1): 63
[16] (李均明, 蒋百灵, 井晓天等. 溶液电导率对LY12铝合金微弧氧化陶瓷层的生长速度和致密度的影响 [J]. 材料热处理学报, 2003, 24(1): 63)
[17] Zhu X W, Han J M, Cui S H, et al. The research progress of micro-arc oxidation on Al and Mg alloys [J]. Mater. Sci. Technol., 2006, 14: 366
[17] (祝晓文, 韩建民, 崔世海等. 铝、镁合金微弧氧化技术研究进展 [J]. 材料科学与工艺, 2006, 14: 366)
[18] Liang J, Guo B G, Tian J, et al. Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy [J]. Appl. Surf. Sci., 2005, 252: 345
doi: 10.1016/j.apsusc.2005.01.007
[19] Guo H F, An M Z. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance [J]. Appl. Surf. Sci., 2005, 246: 229
[20] Guo H F, An M Z, Huo H B, et al. Effect of operating condition on micro-arc oxidation of magnesium alloys [J]. Mater. Sci. Technol., 2006, 14: 616
[20] (郭洪飞, 安茂忠, 霍慧彬等. 工艺条件对镁合金微弧氧化的影响 [J]. 材料科学与工艺, 2006, 14: 616)
[21] Xue W B, Deng Z W, Lai Y C, et al. Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy [J]. J. Am. Ceram. Soc., 1998, 81: 1365
doi: 10.1111/j.1151-2916.1998.tb02493.x
[22] Zhu Z F. Application Manual of Anodic Oxidation Technology for Aluminum Alloy [M]. Beijing: Metallurgical Industry Press, 2007
[22] (朱祖芳. 铝合金阳极氧化工艺技术应用手册 [M]. 北京: 冶金工业出版社, 2007)
[23] Wei F F. The effect of Al content and pretreatment on microstructure and corrosion resistance of Mg alloys and its PEO coatings [D]. Hefei: University of Science and Technology of China, 2016
[23] 魏芳芳. 铝含量及前处理对镁合金及其PEO膜显微结构和耐蚀性能的影响 [D]. 合肥: 中国科学技术大学, 2016)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[5] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[6] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[9] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[10] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[11] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[13] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[15] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.