Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 948-956     CSTR: 32134.14.1005.4537.2022.285      DOI: 10.11902/1005.4537.2022.285
  综合评述 本期目录 | 过刊浏览 |
钢材表面氧化铁皮结构演变机理与应用控制技术研究进展
王军阳1, 易戈文1(), 万善宏1, 姜军2
1.中国科学院兰州化学物理研究所 兰州 730000
2.酒泉钢铁 (集团) 有限责任公司 嘉峪关 735100
Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface
WANG Junyang1, YI Gewen1(), WAN Shanhong1, JIANG Jun2
1.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.Jiuquan Iron & Steel (Group) Co., Ltd., Jiayuguan 735100, China
全文: PDF(11452 KB)   HTML
摘要: 

从氧化铁皮机械除鳞、钢材表面红色氧化铁皮 (红锈)、热轧钢材表面抗腐蚀氧化层、热轧无酸洗钢材表面镀锌及氧化铁皮抗摩擦磨损等方面阐述了氧化铁皮应用控制机理。结合当前市场需求与已有控制技术,指出了未来关于氧化铁皮研究的主要发展方向。

关键词 氧化氧化铁皮结构演变应用控制技术    
Abstract

The oxide scale is an important matter affecting the surface quality of steel, which seriously restricts the application of hot rolled steel in high-end manufacturing. However, there is still a lack of comprehensive reports on the applied control technology for the formed oxide scale on the steel during rolling process. Herewith, the applied control technology for iron oxide scale and relevant mechanism are introduced in terms of mechanical descaling for rolled steel, red iron oxide scale (red rust) on steel surface, anti-corrosive iron oxide scale on hot rolled steel, galvanization of hot rolled steel without pre-pickling, and friction and wear resistance of iron oxide scale etc. By taking the current market demand and the existing control technology into consideration, the main development direction of future research on the applied control technology for the iron oxide scale on hot rolled steel is introduced.

Key wordssteel    oxidation    quadruple oxide scale    structure evolution    application control technology
收稿日期: 2022-09-15      32134.14.1005.4537.2022.285
ZTFLH:  TG142.3  
基金资助:国家自然科学基金(52072380);国家自然科学基金(51675508)
通讯作者: 易戈文,E-mail: gwyi@licp.cas.cn,研究方向为高温及宽温域固体润滑材料及应用技术   
Corresponding author: YI Gewen, E-mail: gwyi@licp.cas.cn   
作者简介: 王军阳,男,1992年生,工程师

引用本文:

王军阳, 易戈文, 万善宏, 姜军. 钢材表面氧化铁皮结构演变机理与应用控制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
WANG Junyang, YI Gewen, WAN Shanhong, JIANG Jun. Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 948-956.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.285      或      https://www.jcscp.org/CN/Y2023/V43/I5/948

图1  高温下短时氧化皮的表面形貌[30]
图2  Fe3O4层-钢界面TEM图像及其取向关系[40]
图3  含硅钢材表面红皮生成机制示意图[41]
图4  含硅钢材表面红皮生成机理组织演变形貌[42]
图5  抗腐蚀氧化层结构及其耐盐雾腐蚀性能[48]
图6  氢还原氧化层机理示意图[51]
图7  FeO表面析出Fe3O4的SEM形貌 [57]
图8  摩擦实验中Fe3O4析出示意图[57]
图9  纳米润滑粒子在氧化层裂纹中的润滑效应示意图[65]
1 Neogi N, Mohanta D K, Dutta P K. Review of vision-based steel surface inspection systems [J]. J. Image Video Proc., 2014, 2014: 50
doi: 10.1186/1687-5281-2014-50
2 Liu Z Y, Li Z F. State of the art development on technology for new generation to controlling oxide scale of hot rolled plate and strip [J]. Steel Rolling, 2020, 37: 1
2 刘振宇, 李志峰. 新一代热轧板带材表面氧化铁皮控制技术的现状与进展 [J]. 轧钢, 2020, 37: 1
3 Hrabovský J, Dobeš F, Horský J. Small punch tests at oxide scales surface of structural steel and low silicon steel [J]. Oxid. Met., 2014, 82: 297
doi: 10.1007/s11085-014-9492-5
4 Basabe V V, Szpunar J A. Growth rate and phase composition of oxide scales during hot rolling of low carbon steel [J]. ISIJ Int., 2004, 44: 1554
doi: 10.2355/isijinternational.44.1554
5 Chen R Y, Yeun W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen [J]. Oxid. Met., 2003, 59: 433
doi: 10.1023/A:1023685905159
6 Yu X L, Jiang Z Y, Zhao J W, et al. A comparison of texture development in an experimental and industrial tertiary oxide scale in a hot strip mill [J]. Metall. Mater. Trans., 2015, 46B: 2503
7 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
8 Xia Z X, Zhang C, Huang X F, et al. Improve oxidation resistance at high temperature by nanocrystalline surface layer [J]. Sci. Rep., 2015, 5: 13027
doi: 10.1038/srep13027 pmid: 26269034
9 Yu X L, Jiang Z Y, Zhao J W, et al. A review of microstructure and microtexture of tertiary oxide scale in a hot strip mill [J]. Key Eng. Mater., 2016, 716: 843
doi: 10.4028/www.scientific.net/KEM.716
10 Yu X L, Jiang Z Y, Wang X D, et al. Effect of coiling temperature on oxide scale of hot-rolled strip [J]. Adv. Mater. Res., 2011, 415-417: 853
11 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016
12 Shi Q Q, Liu J, Wang W, et al. High temperature oxidation behavior of SIMP steel [J]. Oxid. Met., 2015, 83: 521
doi: 10.1007/s11085-015-9532-9
13 Movahedi-Rad A, Pelaseyed S S, Attarian M, et al. Oxidation behavior of AISI 321, AISI 316, and AISI 409 stainless steels: Kinetic, thermodynamic, and diffusion studies [J]. J. Mater. Res., 2016, 31: 2088
doi: 10.1557/jmr.2016.141
14 Seo H S, Yun D W, Kim K Y. Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect [J]. Int. J. Hydrogen Energy, 2013, 38: 2432
doi: 10.1016/j.ijhydene.2012.12.073
15 Davis J R. ASM Specialty Handbook: Carbon and Alloy Steels [M]. Metals Park, OH: ASM International, 1996
16 Gleeson B, Hadavi S M M, Young D J. Isothermal transformation behavior of thermally-grown wüstite [J]. Mater. High Temp., 2000, 17: 311
doi: 10.1179/mht.2000.17.2.020
17 Guo R M, Too J J M. Recent advances in heat transfer and micro-structure modelling for metal processing [A]. 1995 ASME International Mechanical Engineering Congress and Exposition [M]. San Francisco, California: American Society of Mechanical Engineers, 1995
18 Yuan J T, Wang W, Zhu S L, et al. Comparison between the oxidation of iron in oxygen and in steam at 650-750 °C [J]. Corros. Sci., 2013, 75: 309
doi: 10.1016/j.corsci.2013.06.014
19 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Amsterdam: Elsevier, 2008
20 Schütze M. Corrosion books: introduction to high temperature oxidation and corrosion. By: A. S. Khanna - materials and corrosion 5/2003 [J]. Mater. Corros., 2003, 54: 346
21 Wagner C. Equations for transport in solid oxides and sulfides of transition metals [J]. Prog. Solid State Chem., 1975, 10: 3
doi: 10.1016/0079-6786(75)90002-3
22 Wu W, Wu Z H, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications [J]. Sci. Technol. Adv. Mater., 2015, 16: 023501
23 Smeltzer W W. The kinetics of wüstite scale formation on iron [J]. Acta Metall., 1960, 8: 377
doi: 10.1016/0001-6160(60)90006-7
24 Atkinson A, O'dwyer M L, Taylor R I. 55Fe diffusion in magnetite crystals at 500 °C and its relevance to oxidation of iron [J]. J. Mater. Sci., 1983, 18: 2371
doi: 10.1007/BF00541841
25 Smeltzer W W, Young D J. Oxidation properties of transition metals [J]. Prog. Solid State Chem., 1975, 10: 17
doi: 10.1016/0079-6786(75)90003-5
26 Tozini D, Forti M, Gargano P, et al. Charge difference calculation in Fe/Fe3O4 interfaces from DFT results [J]. Proc. Mater. Sci., 2015, 9: 612
27 Juricic C., Pinto H., Cardinali D., et al. Evolution of microstructure and internal stresses in multi-phase oxide scales grown on (110) surfaces of iron single crystals at 650 °C [J]. Oxid. Met., 2010, 73: 115
doi: 10.1007/s11085-009-9166-x
28 Yu X L. A Study of Oxides Formed on Hot-Rolled Steel Strip [M]. Saarbrücken: LAP Lambert Academic Publishing, 2015
29 Chen R Y, Yuen W Y D. Oxidation of low-carbon, low-Silicon mild steel at 450-900 °C under conditions relevant to hot-strip processing [J]. Oxid. Met., 2002, 57: 53
doi: 10.1023/A:1013390628475
30 Wang J, Yu W, Dong E T, et al. Evolution of oxide structures of low-alloy steel surface during short-time oxidation at high temperature [A]. Han Y F. Advances in Materials Processing [M]. Singapore: Springer, 2018: 725
31 Matsuno F. Blistering and hydraulic removal of scale films of rimmed steel at high temperature [J]. ISIJ Int., 1980, 20: 413
doi: 10.2355/isijinternational1966.20.413
32 Chen R Y, Yuen W Y D. Short-time oxidation behavior of low-carbon, low-Silicon steel in air at 850-1180 °C: II. Linear to parabolic transition determined using existing gas-phase transport and solid-phase diffusion theories [J]. Oxid. Met., 2010, 73: 353
doi: 10.1007/s11085-009-9180-z
33 Raghavan V. Al-Fe-O (Aluminum-Iron-Oxygen) [J]. J. Phase Equilib. Diffus., 2010, 31: 367
doi: 10.1007/s11669-010-9712-x
34 Chen R Y, Yuen W Y D. A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling [J]. Oxid. Met., 2000, 53: 539
doi: 10.1023/A:1004637127231
35 Krzyzanowski M, Beynon J H, Farrugia D C J. Oxide Scale Behavior in High Temperature Metal Processing [M]. Weinheim: John Wiley & Sons, 2010
36 Yu X L, Jiang Z Y, Zhao J W, et al. Crystallographic texture based analysis of Fe3O4/α-Fe2O3 scale formed on a hot-rolled microalloyed steel [J]. ISIJ Int., 2015, 55: 278
doi: 10.2355/isijinternational.55.278
37 Chattopadhyay A, Chanda T. Role of silicon on oxide morphology and pickling behaviour of automotive steels [J]. Scr. Mater., 2008, 58: 882
doi: 10.1016/j.scriptamat.2008.01.006
38 Peng Y. Research on organization structure and controlling of mechanical peeling properties of iron oxide organization of 72A cord steel wire rod [D]. Wuhan: Wuhan University of Science and Technology, 2018
38 彭 玉. 72A高碳钢盘条氧化铁皮组织结构及机械剥离性控制研究 [D]. 武汉: 武汉科技大学, 2018
39 Gong D G, Fang F, Jiang J Q, et al. Laser raman spectroscopy analysis on oxide scale of high carbon steel wire [J]. Phys. Test. Chem. Anal., 2008, 44A(11) : 609
39 巩党国, 方 峰, 蒋建清 等. 高碳钢盘条氧化皮的激光拉曼光谱分析 [J]. 理化检验: 物理分册, 2008, 44(11): 609
40 Kobayashi A, Seto K, Urabe T, et al. Effect of scale microstructure on scale adhesion of low carbon sheet steel [J]. Mater. Sci. Forum, 2006, 522/523: 409
41 Fukagawa T, Okada H, Maehara Y. Mechanism of red scale defect formation in Si-added hot-rolled steel sheets [J]. ISIJ Int., 1994, 34: 906
doi: 10.2355/isijinternational.34.906
42 Mouayd A A, Koltsov A, Sutter E, et al. Effect of silicon content in steel and oxidation temperature on scale growth and morphology [J]. Mater. Chem. Phys., 2014, 143: 996
doi: 10.1016/j.matchemphys.2013.10.037
43 Okada H, Fukagawa T, Ishihara H, et al. Prevention of red scale formation during hot rolling of steels [J]. ISIJ Int., 1995, 35: 886
doi: 10.2355/isijinternational.35.886
44 Cai J X, Cheng X Q, Zhao B J, et al. Study on the corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment [J]. Anti-Corros. Methods Mater., 2019, 66: 163
45 Collazo A, Nóvoa X R, Pérez C, et al. EIS study of the rust converter effectiveness under different conditions [J]. Electrochim. Acta, 2008, 53: 7565
doi: 10.1016/j.electacta.2007.11.078
46 Macák J, Sajdl P, Kučera P, et al. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water [J]. Electrochim. Acta, 2006, 51: 3566
doi: 10.1016/j.electacta.2005.10.013
47 Dong C F, Xue H B, Li X G, et al. Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution [J]. Electrochim. Acta, 2009, 54: 4223
doi: 10.1016/j.electacta.2009.02.080
48 Li C G, Shan W C, Liu Y S, et al. Corrosion resistance process based on control of oxide scale in whole process of hot rolling [J]. Iron Steel, 2021, 56: 129
48 李成刚, 单文超, 刘怡私 等. 基于热轧全流程氧化铁皮控制的耐蚀性工艺 [J]. 钢铁, 2021, 56: 129
49 Liu Y H, Ding C F, Li J C, et al. Study on the interface reaction layer of hydrogen reduction hot-rolled high-strength steel hot-dip galvanizing [J]. Mater. Res. Express, 2022, 9: 036403
50 Wu G X, Guan C, Tan N, et al. Effect of hot rolled substrate of hydrogen reduction on interfacial reaction layer of hot-dip galvanizing [J]. J. Mater. Process. Technol., 2018, 259: 134
doi: 10.1016/j.jmatprotec.2018.04.027
51 He Y Q. Research and application of hot dip galvanizing of hot-rolled steel strip without pickling [D]. Shenyang: Northeastern University, 2015: 107
51 何永全. 热轧带钢免酸洗还原热镀锌工艺研究与应用 [D]. 沈阳: 东北大学, 2015: 107
52 Chen L, Fourmentin R, Mc Dermid J R. Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing [J]. Metall. Mater. Trans., 2008, 39A: 2128
53 Wang K K, Chang L W, Gan D, et al. Heteroepitaxial growth of Fe2Al5 inhibition layer in hot-dip galvanizing of an interstitial-free steel [J]. Thin Solid Films, 2010, 518: 1935
doi: 10.1016/j.tsf.2009.07.154
54 Rudkins N T, Hartley P, Pillinger I, et al. Friction modelling and experimental observations in hot ring compression tests [J]. J. Mater. Process. Technol., 1996, 60: 349
doi: 10.1016/0924-0136(96)02353-9
55 Munther P A, Lenard J G. The effect of scaling on interfacial friction in hot rolling of steels [J]. J. Mater. Process. Technol., 1999, 88: 105
doi: 10.1016/S0924-0136(98)00392-6
56 Jin W, Piereder D, Lenard J G. A study of the coefficient of friction during hot rolling of a ferritic stainless steel [J]. Lubricat. Eng., 2002, 58: 29
57 Yu X L, Jiang Z Y, Wei D B, et al. Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel [J]. Wear, 2013, 302: 1286
doi: 10.1016/j.wear.2013.01.015
58 Jiang J, Stott F H, Stack M M. A mathematical model for sliding wear of metals at elevated temperatures [J]. Wear, 1995, 181-183: 20
doi: 10.1016/0043-1648(94)07031-8
59 Kim B K, Szpunar J A. Orientation imaging microscopy in research on high temperature oxidation [A]. SchwartzAJ, KumarM, AdamsBL, et al. Electron Backscatter Diffraction in Materials Science [M]. 2nd ed. New York: Springer, 2009: 361
60 Pauschitz A, Roy M, Franek F. Mechanisms of sliding wear of metals and alloys at elevated temperatures [J]. Tribol. Int., 2008, 41: 584
doi: 10.1016/j.triboint.2007.10.003
61 Rapoport L, Leshchinsky V, Lvovsky M, et al. Mechanism of friction of fullerenes [J]. Ind. Lubricat. Tribol., 2002, 54: 171
doi: 10.1108/00368790210431727
62 Wang Y X, Li J L, Shan L, et al. Tribological performances of the graphite-like carbon films deposited with different target powers in ambient air and distilled water [J]. Tribol. Int., 2014, 73: 17
doi: 10.1016/j.triboint.2013.12.022
63 Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface [J]. Tribol. Lett., 2004, 17: 961
doi: 10.1007/s11249-004-8109-6
64 Lee K, Hwang Y, Cheong S, et al. Understanding the role of nanoparticles in nano-oil lubrication [J]. Tribol. Lett., 2009, 35: 127
doi: 10.1007/s11249-009-9441-7
65 Yu X L, Jiang Z Y, Zhao J W, et al. The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling [J]. Tribol. Int., 2016, 93: 190
doi: 10.1016/j.triboint.2015.08.049
[1] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[2] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[3] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[4] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[5] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[6] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[7] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[8] 石建光, 陈银平, 李国聪, 谢益人. 混凝土界面处理工艺对劈裂粘结性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1119-1125.
[9] 李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.
[10] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[11] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[12] 宇波, 李彰, 周凯旋, 田浩亮, 房永超, 张晓敏, 金国. MoSi2 改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[13] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[14] 袁磊, 谢新, 陈明辉, 李烽杰, 王福会. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[15] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.