|
|
钢材表面氧化铁皮结构演变机理与应用控制技术研究进展 |
王军阳1, 易戈文1( ), 万善宏1, 姜军2 |
1.中国科学院兰州化学物理研究所 兰州 730000 2.酒泉钢铁 (集团) 有限责任公司 嘉峪关 735100 |
|
Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface |
WANG Junyang1, YI Gewen1( ), WAN Shanhong1, JIANG Jun2 |
1.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 2.Jiuquan Iron & Steel (Group) Co., Ltd., Jiayuguan 735100, China |
引用本文:
王军阳, 易戈文, 万善宏, 姜军. 钢材表面氧化铁皮结构演变机理与应用控制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
WANG Junyang,
YI Gewen,
WAN Shanhong,
JIANG Jun.
Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 948-956.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.285
或
https://www.jcscp.org/CN/Y2023/V43/I5/948
|
1 |
Neogi N, Mohanta D K, Dutta P K. Review of vision-based steel surface inspection systems [J]. J. Image Video Proc., 2014, 2014: 50
doi: 10.1186/1687-5281-2014-50
|
2 |
Liu Z Y, Li Z F. State of the art development on technology for new generation to controlling oxide scale of hot rolled plate and strip [J]. Steel Rolling, 2020, 37: 1
|
2 |
刘振宇, 李志峰. 新一代热轧板带材表面氧化铁皮控制技术的现状与进展 [J]. 轧钢, 2020, 37: 1
|
3 |
Hrabovský J, Dobeš F, Horský J. Small punch tests at oxide scales surface of structural steel and low silicon steel [J]. Oxid. Met., 2014, 82: 297
doi: 10.1007/s11085-014-9492-5
|
4 |
Basabe V V, Szpunar J A. Growth rate and phase composition of oxide scales during hot rolling of low carbon steel [J]. ISIJ Int., 2004, 44: 1554
doi: 10.2355/isijinternational.44.1554
|
5 |
Chen R Y, Yeun W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen [J]. Oxid. Met., 2003, 59: 433
doi: 10.1023/A:1023685905159
|
6 |
Yu X L, Jiang Z Y, Zhao J W, et al. A comparison of texture development in an experimental and industrial tertiary oxide scale in a hot strip mill [J]. Metall. Mater. Trans., 2015, 46B: 2503
|
7 |
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
|
8 |
Xia Z X, Zhang C, Huang X F, et al. Improve oxidation resistance at high temperature by nanocrystalline surface layer [J]. Sci. Rep., 2015, 5: 13027
doi: 10.1038/srep13027
pmid: 26269034
|
9 |
Yu X L, Jiang Z Y, Zhao J W, et al. A review of microstructure and microtexture of tertiary oxide scale in a hot strip mill [J]. Key Eng. Mater., 2016, 716: 843
doi: 10.4028/www.scientific.net/KEM.716
|
10 |
Yu X L, Jiang Z Y, Wang X D, et al. Effect of coiling temperature on oxide scale of hot-rolled strip [J]. Adv. Mater. Res., 2011, 415-417: 853
|
11 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016
|
12 |
Shi Q Q, Liu J, Wang W, et al. High temperature oxidation behavior of SIMP steel [J]. Oxid. Met., 2015, 83: 521
doi: 10.1007/s11085-015-9532-9
|
13 |
Movahedi-Rad A, Pelaseyed S S, Attarian M, et al. Oxidation behavior of AISI 321, AISI 316, and AISI 409 stainless steels: Kinetic, thermodynamic, and diffusion studies [J]. J. Mater. Res., 2016, 31: 2088
doi: 10.1557/jmr.2016.141
|
14 |
Seo H S, Yun D W, Kim K Y. Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect [J]. Int. J. Hydrogen Energy, 2013, 38: 2432
doi: 10.1016/j.ijhydene.2012.12.073
|
15 |
Davis J R. ASM Specialty Handbook: Carbon and Alloy Steels [M]. Metals Park, OH: ASM International, 1996
|
16 |
Gleeson B, Hadavi S M M, Young D J. Isothermal transformation behavior of thermally-grown wüstite [J]. Mater. High Temp., 2000, 17: 311
doi: 10.1179/mht.2000.17.2.020
|
17 |
Guo R M, Too J J M. Recent advances in heat transfer and micro-structure modelling for metal processing [A]. 1995 ASME International Mechanical Engineering Congress and Exposition [M]. San Francisco, California: American Society of Mechanical Engineers, 1995
|
18 |
Yuan J T, Wang W, Zhu S L, et al. Comparison between the oxidation of iron in oxygen and in steam at 650-750 °C [J]. Corros. Sci., 2013, 75: 309
doi: 10.1016/j.corsci.2013.06.014
|
19 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Amsterdam: Elsevier, 2008
|
20 |
Schütze M. Corrosion books: introduction to high temperature oxidation and corrosion. By: A. S. Khanna - materials and corrosion 5/2003 [J]. Mater. Corros., 2003, 54: 346
|
21 |
Wagner C. Equations for transport in solid oxides and sulfides of transition metals [J]. Prog. Solid State Chem., 1975, 10: 3
doi: 10.1016/0079-6786(75)90002-3
|
22 |
Wu W, Wu Z H, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications [J]. Sci. Technol. Adv. Mater., 2015, 16: 023501
|
23 |
Smeltzer W W. The kinetics of wüstite scale formation on iron [J]. Acta Metall., 1960, 8: 377
doi: 10.1016/0001-6160(60)90006-7
|
24 |
Atkinson A, O'dwyer M L, Taylor R I. 55Fe diffusion in magnetite crystals at 500 °C and its relevance to oxidation of iron [J]. J. Mater. Sci., 1983, 18: 2371
doi: 10.1007/BF00541841
|
25 |
Smeltzer W W, Young D J. Oxidation properties of transition metals [J]. Prog. Solid State Chem., 1975, 10: 17
doi: 10.1016/0079-6786(75)90003-5
|
26 |
Tozini D, Forti M, Gargano P, et al. Charge difference calculation in Fe/Fe3O4 interfaces from DFT results [J]. Proc. Mater. Sci., 2015, 9: 612
|
27 |
Juricic C., Pinto H., Cardinali D., et al. Evolution of microstructure and internal stresses in multi-phase oxide scales grown on (110) surfaces of iron single crystals at 650 °C [J]. Oxid. Met., 2010, 73: 115
doi: 10.1007/s11085-009-9166-x
|
28 |
Yu X L. A Study of Oxides Formed on Hot-Rolled Steel Strip [M]. Saarbrücken: LAP Lambert Academic Publishing, 2015
|
29 |
Chen R Y, Yuen W Y D. Oxidation of low-carbon, low-Silicon mild steel at 450-900 °C under conditions relevant to hot-strip processing [J]. Oxid. Met., 2002, 57: 53
doi: 10.1023/A:1013390628475
|
30 |
Wang J, Yu W, Dong E T, et al. Evolution of oxide structures of low-alloy steel surface during short-time oxidation at high temperature [A]. Han Y F. Advances in Materials Processing [M]. Singapore: Springer, 2018: 725
|
31 |
Matsuno F. Blistering and hydraulic removal of scale films of rimmed steel at high temperature [J]. ISIJ Int., 1980, 20: 413
doi: 10.2355/isijinternational1966.20.413
|
32 |
Chen R Y, Yuen W Y D. Short-time oxidation behavior of low-carbon, low-Silicon steel in air at 850-1180 °C: II. Linear to parabolic transition determined using existing gas-phase transport and solid-phase diffusion theories [J]. Oxid. Met., 2010, 73: 353
doi: 10.1007/s11085-009-9180-z
|
33 |
Raghavan V. Al-Fe-O (Aluminum-Iron-Oxygen) [J]. J. Phase Equilib. Diffus., 2010, 31: 367
doi: 10.1007/s11669-010-9712-x
|
34 |
Chen R Y, Yuen W Y D. A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling [J]. Oxid. Met., 2000, 53: 539
doi: 10.1023/A:1004637127231
|
35 |
Krzyzanowski M, Beynon J H, Farrugia D C J. Oxide Scale Behavior in High Temperature Metal Processing [M]. Weinheim: John Wiley & Sons, 2010
|
36 |
Yu X L, Jiang Z Y, Zhao J W, et al. Crystallographic texture based analysis of Fe3O4/α-Fe2O3 scale formed on a hot-rolled microalloyed steel [J]. ISIJ Int., 2015, 55: 278
doi: 10.2355/isijinternational.55.278
|
37 |
Chattopadhyay A, Chanda T. Role of silicon on oxide morphology and pickling behaviour of automotive steels [J]. Scr. Mater., 2008, 58: 882
doi: 10.1016/j.scriptamat.2008.01.006
|
38 |
Peng Y. Research on organization structure and controlling of mechanical peeling properties of iron oxide organization of 72A cord steel wire rod [D]. Wuhan: Wuhan University of Science and Technology, 2018
|
38 |
彭 玉. 72A高碳钢盘条氧化铁皮组织结构及机械剥离性控制研究 [D]. 武汉: 武汉科技大学, 2018
|
39 |
Gong D G, Fang F, Jiang J Q, et al. Laser raman spectroscopy analysis on oxide scale of high carbon steel wire [J]. Phys. Test. Chem. Anal., 2008, 44A(11) : 609
|
39 |
巩党国, 方 峰, 蒋建清 等. 高碳钢盘条氧化皮的激光拉曼光谱分析 [J]. 理化检验: 物理分册, 2008, 44(11): 609
|
40 |
Kobayashi A, Seto K, Urabe T, et al. Effect of scale microstructure on scale adhesion of low carbon sheet steel [J]. Mater. Sci. Forum, 2006, 522/523: 409
|
41 |
Fukagawa T, Okada H, Maehara Y. Mechanism of red scale defect formation in Si-added hot-rolled steel sheets [J]. ISIJ Int., 1994, 34: 906
doi: 10.2355/isijinternational.34.906
|
42 |
Mouayd A A, Koltsov A, Sutter E, et al. Effect of silicon content in steel and oxidation temperature on scale growth and morphology [J]. Mater. Chem. Phys., 2014, 143: 996
doi: 10.1016/j.matchemphys.2013.10.037
|
43 |
Okada H, Fukagawa T, Ishihara H, et al. Prevention of red scale formation during hot rolling of steels [J]. ISIJ Int., 1995, 35: 886
doi: 10.2355/isijinternational.35.886
|
44 |
Cai J X, Cheng X Q, Zhao B J, et al. Study on the corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment [J]. Anti-Corros. Methods Mater., 2019, 66: 163
|
45 |
Collazo A, Nóvoa X R, Pérez C, et al. EIS study of the rust converter effectiveness under different conditions [J]. Electrochim. Acta, 2008, 53: 7565
doi: 10.1016/j.electacta.2007.11.078
|
46 |
Macák J, Sajdl P, Kučera P, et al. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water [J]. Electrochim. Acta, 2006, 51: 3566
doi: 10.1016/j.electacta.2005.10.013
|
47 |
Dong C F, Xue H B, Li X G, et al. Electrochemical corrosion behavior of hot-rolled steel under oxide scale in chloride solution [J]. Electrochim. Acta, 2009, 54: 4223
doi: 10.1016/j.electacta.2009.02.080
|
48 |
Li C G, Shan W C, Liu Y S, et al. Corrosion resistance process based on control of oxide scale in whole process of hot rolling [J]. Iron Steel, 2021, 56: 129
|
48 |
李成刚, 单文超, 刘怡私 等. 基于热轧全流程氧化铁皮控制的耐蚀性工艺 [J]. 钢铁, 2021, 56: 129
|
49 |
Liu Y H, Ding C F, Li J C, et al. Study on the interface reaction layer of hydrogen reduction hot-rolled high-strength steel hot-dip galvanizing [J]. Mater. Res. Express, 2022, 9: 036403
|
50 |
Wu G X, Guan C, Tan N, et al. Effect of hot rolled substrate of hydrogen reduction on interfacial reaction layer of hot-dip galvanizing [J]. J. Mater. Process. Technol., 2018, 259: 134
doi: 10.1016/j.jmatprotec.2018.04.027
|
51 |
He Y Q. Research and application of hot dip galvanizing of hot-rolled steel strip without pickling [D]. Shenyang: Northeastern University, 2015: 107
|
51 |
何永全. 热轧带钢免酸洗还原热镀锌工艺研究与应用 [D]. 沈阳: 东北大学, 2015: 107
|
52 |
Chen L, Fourmentin R, Mc Dermid J R. Morphology and kinetics of interfacial layer formation during continuous hot-dip galvanizing and galvannealing [J]. Metall. Mater. Trans., 2008, 39A: 2128
|
53 |
Wang K K, Chang L W, Gan D, et al. Heteroepitaxial growth of Fe2Al5 inhibition layer in hot-dip galvanizing of an interstitial-free steel [J]. Thin Solid Films, 2010, 518: 1935
doi: 10.1016/j.tsf.2009.07.154
|
54 |
Rudkins N T, Hartley P, Pillinger I, et al. Friction modelling and experimental observations in hot ring compression tests [J]. J. Mater. Process. Technol., 1996, 60: 349
doi: 10.1016/0924-0136(96)02353-9
|
55 |
Munther P A, Lenard J G. The effect of scaling on interfacial friction in hot rolling of steels [J]. J. Mater. Process. Technol., 1999, 88: 105
doi: 10.1016/S0924-0136(98)00392-6
|
56 |
Jin W, Piereder D, Lenard J G. A study of the coefficient of friction during hot rolling of a ferritic stainless steel [J]. Lubricat. Eng., 2002, 58: 29
|
57 |
Yu X L, Jiang Z Y, Wei D B, et al. Tribological properties of magnetite precipitate from oxide scale in hot-rolled microalloyed steel [J]. Wear, 2013, 302: 1286
doi: 10.1016/j.wear.2013.01.015
|
58 |
Jiang J, Stott F H, Stack M M. A mathematical model for sliding wear of metals at elevated temperatures [J]. Wear, 1995, 181-183: 20
doi: 10.1016/0043-1648(94)07031-8
|
59 |
Kim B K, Szpunar J A. Orientation imaging microscopy in research on high temperature oxidation [A]. SchwartzAJ, KumarM, AdamsBL, et al. Electron Backscatter Diffraction in Materials Science [M]. 2nd ed. New York: Springer, 2009: 361
|
60 |
Pauschitz A, Roy M, Franek F. Mechanisms of sliding wear of metals and alloys at elevated temperatures [J]. Tribol. Int., 2008, 41: 584
doi: 10.1016/j.triboint.2007.10.003
|
61 |
Rapoport L, Leshchinsky V, Lvovsky M, et al. Mechanism of friction of fullerenes [J]. Ind. Lubricat. Tribol., 2002, 54: 171
doi: 10.1108/00368790210431727
|
62 |
Wang Y X, Li J L, Shan L, et al. Tribological performances of the graphite-like carbon films deposited with different target powers in ambient air and distilled water [J]. Tribol. Int., 2014, 73: 17
doi: 10.1016/j.triboint.2013.12.022
|
63 |
Liu G, Li X, Qin B, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface [J]. Tribol. Lett., 2004, 17: 961
doi: 10.1007/s11249-004-8109-6
|
64 |
Lee K, Hwang Y, Cheong S, et al. Understanding the role of nanoparticles in nano-oil lubrication [J]. Tribol. Lett., 2009, 35: 127
doi: 10.1007/s11249-009-9441-7
|
65 |
Yu X L, Jiang Z Y, Zhao J W, et al. The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling [J]. Tribol. Int., 2016, 93: 190
doi: 10.1016/j.triboint.2015.08.049
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|