|
|
稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究 |
陈施润, 陈文革( ), 钱颖, 张辉 |
西安理工大学材料科学与工程学院 西安 710048 |
|
Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating |
CHEN Shirun, CHEN Wenge( ), QIAN Ying, ZHANG Hui |
School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, China |
引用本文:
陈施润, 陈文革, 钱颖, 张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
Shirun CHEN,
Wenge CHEN,
Ying QIAN,
Hui ZHANG.
Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 107-118.
1 |
Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
|
1 |
李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
|
2 |
Chen M Z. Advantages and disadvantages of water-based coating [J]. Build. Tech. Dev., 2015, 42(2): 66
|
2 |
陈敏竹. 水性涂料的优势及面临的问题 [J]. 建筑技术开发, 2015, 42(2): 66
|
3 |
Liang C X, Liu Z, Zhang S F. Research progress in modification and anti-corrosion properties of waterborne coatings [J]. Mater. Prot., 2019, 52(7): 135
|
3 |
梁楚欣, 刘 峥, 张淑芬. 水性防腐蚀涂料的改性及其防腐蚀性能研究进展 [J]. 材料保护, 2019, 52(7): 135
|
4 |
Zhao X X, Li K, Li W M, et al. Study on the corrosion protection mechanism of graphene modified anticorrosive coatings [J]. China Coat., 2017, 32(2): 18
|
4 |
赵新新, 李 凯, 李伟铭 等. 石墨烯改性防腐涂料的防腐机理研究 [J]. 中国涂料, 2017, 32(2): 18
|
5 |
Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
|
5 |
栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
|
6 |
Wang Y, Li Y, Zhu J, et al. Surface modification mechanism of graphene oxide by adding rare earths [J]. J. Mater. Eng., 2018, 46(5): 29
doi: 10.11868/j.issn.1001-4381.2017.000429
|
6 |
王 莹, 李 勇, 朱 靖 等. 氧化石墨烯表面稀土改性机理 [J]. 材料工程, 2018, 46(5): 29
|
7 |
Lei Y H, Liu N X, Zhang Y L, et al. Preparation, corrosion-and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597
|
7 |
类延华, 刘宁轩, 张玉良 等. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 597
doi: 10.11902/1005.4537.2021.186
|
8 |
Zong Y, Song R G, Hua T S, et al. Microstructure and properties of rare earth CeO2-doped graphene composite coatings prepared by MAO on AA7050 [J]. Int. J. Mater. Res., 2021, 111: 923
doi: 10.3139/146.111871
|
9 |
Liang Q M, Wang W, Chen Z S, et al. Effects of rare earth metal oxide doping on micromorphology and corrosion behavior of hydroxyapatite-graphene oxide composite coating fabriacted on AZ91 magnesium alloy [J]. Int. J. Electrochem. Sci., 2021, 16: 210647
doi: 10.20964/2021.06.28
|
10 |
Alam R, Mobin M, Aslam J. Polypyrrole/graphene nanosheets/rare earth ions/dodecyl benzene sulfonic acid nanocomposite as a highly effective anticorrosive coating [J]. Surf. Coat. Technol., 2016, 307: 382
doi: 10.1016/j.surfcoat.2016.09.010
|
11 |
Zhang X K, Zhou Y, Liang A M, et al. Facile fabrication and corrosion behavior of iron and iron-reduced graphene oxide composite coatings by electroless plating from baths containing no reducing agent [J]. Surf. Coat. Technol., 2016, 304: 519
doi: 10.1016/j.surfcoat.2016.07.071
|
12 |
Ye Y W, Zhang D W, Liu T, et al. Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene [J]. Carbon, 2019, 142: 164
doi: 10.1016/j.carbon.2018.10.050
|
13 |
Xiao F J, Qian C, Guo M Y, et al. Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite [J]. Prog. Org. Coat., 2018, 125: 79
|
14 |
Zheng T L. Modern Coatings and Coating Engineering [M]. Beijing: Beihang University Press, 2003
|
14 |
郑天亮. 现代涂料与涂装工程 [M]. 北京: 北京航空航天大学出版社, 2003
|
15 |
Dong J C, Zhang S H, Lyu Z W, et al. Effect of base metal surface treatment on adhesion and capacitive behavior of organic coatings [J]. Shandong Chem. Ind., 2020, 49(4): 135
|
15 |
董佳晨, 张胜寒, 吕志文 等. 基底金属表面处理对有机涂层附着力和电容行为的影响 [J]. 山东化工, 2020, 49(4): 135
|
16 |
Wang H W, Mu X L, Liu C C. Effect of substrate surface state on adhesion of silane epoxy hybrid resin coating/2024 aluminium alloy [J]. Equip. Environ. Eng., 2016, 13(1): 14
|
16 |
王浩伟, 慕仙莲, 刘成臣. 基体表面状态对硅烷环氧杂化树脂涂层/2024铝合金间附着力影响 [J]. 装备环境工程, 2016, 13(1): 14
|
17 |
Zhang F, Qian H C, Wang L T, et al. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying [J]. Surf. Coat. Technol., 2018, 341: 15
doi: 10.1016/j.surfcoat.2018.01.045
|
18 |
Li J, Feng L J, Li G Z, et al. Preparation and characterization of fluorocarbon-multiwall carbon nanotube composite coatings [J]. J. Funct. Mater., 2016, 47: 3232
doi: 10.3969/j.issn.1001-9731.2016.03.043
|
18 |
李 娟, 冯拉俊, 李光照 等. 氟碳漆/碳纳米管导电防腐涂层的制备及表征 [J]. 功能材料, 2016, 47: 3232
|
19 |
Dong Y H. Anti-corrosion effect of magnesium phosphate cement coating on carbon steel [D]. Xi'an: Southwest Jiaotong University, 2017
|
19 |
董英豪. 碳钢表面磷酸镁水泥涂层的防腐性研究 [D]. 西安: 西南交通大学, 2017
|
20 |
The State Bureau of Quality and Technical Supervision. Paints and varnishes-Cross cut test for films [S]. Beijing: Standards Press of China, 1999
|
20 |
国家质量技术监督局. 色漆和清漆 漆膜的划格试验 [S]. 北京: 中国标准出版社, 1999
|
21 |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes - Determination of film hardness by pencil test [S]. Beijing: Standards Press of China, 2007
|
21 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 铅笔法测定漆膜硬度 [S]. 北京: 中国标准出版社, 2007
|
22 |
Zhu D Y, Zhang Y C, Dai P Q, et al. Novel characterization of wetting properties and the calculation of liquid-solid interface tension (Ⅱ) [J]. Sci. Technol. Eng., 2007, 7: 3063
|
22 |
朱定一, 张远超, 戴品强 等. 润湿性表征体系及液固界面张力计算的新方法(Ⅱ) [J]. 科学技术与工程, 2007, 7: 3063
|
23 |
Yu Z X, Di H H, Ma Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings [J]. Surf. Coat. Technol., 2015, 276: 471
doi: 10.1016/j.surfcoat.2015.06.027
|
24 |
El-Rahman M A, Mohamed L A L, Said N M. Effect of high gamma irradiation doses on structure and morphology properties for Epoxy resins [J]. Optik, 2021, 226: 165674
|
25 |
Naeem M, Kuan H C, Michelmore A, et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving [J]. Carbon, 2021, 177: 271
doi: 10.1016/j.carbon.2021.02.059
|
26 |
Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites [J]. Powder Metall. Technol., 2018, 36: 363
|
26 |
魏邦争, 陈闻超, 朱 曦 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响 [J]. 粉末冶金技术, 2018, 36: 363
doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
|
27 |
Zaman I, Kuan H C, Meng Q S, et al. A facile approach to chemically modified graphene and its polymer nanocomposites [J]. Adv. Funct. Mater., 2012, 22: 2735
doi: 10.1002/adfm.v22.13
|
28 |
Guan L Z, Wan Y J, Gong L X, et al. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide [J]. J. Mater. Chem., 2014, 2A: 15058
|
29 |
Wang X, Li Y, Li C, et al. Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments [J]. Corros. Sci., 2020, 176: 109049
doi: 10.1016/j.corsci.2020.109049
|
30 |
Contu F, Fenzy L, Taylor S R. An FT-IR investigation of epoxy coatings as a function of electrolyte composition [J]. Prog. Org. Coat., 2012, 75: 92
doi: 10.1016/j.porgcoat.2012.04.001
|
31 |
Hao S S, Sun X F, Song W, et al. Effect of modified graphene on corrosion resistance of epoxy resin coating [J]. Paint Coat. Ind., 2018, 48(12): 34
|
31 |
郝松松, 孙晓峰, 宋 巍 等. 改性石墨烯对环氧树脂涂层耐腐蚀性能的影响 [J]. 涂料工业, 2018, 48(12): 34
|
32 |
Wang J F, Jin X X, Li C H, et al. Graphene and graphene derivatives toughening polymers: toward high toughness and strength [J]. Chem. Eng. J., 2019, 370: 831
doi: 10.1016/j.cej.2019.03.229
|
33 |
Wang J F, Li C H, Zhang X M, et al. Polycarbonate toughening with reduced graphene oxide: toward high toughness, strength and notch resistance [J]. Chem. Eng. J., 2017, 325: 474
doi: 10.1016/j.cej.2017.05.090
|
34 |
Mao J Y, Peng R S. Study on new PPS composite coating preparation and performance [J]. Dev. Appl. Mater., 2014, 29(1): 36
|
34 |
毛杰勇, 彭如恕. 新型聚苯硫醚复合涂层的制备和性能研究 [J]. 材料开发与应用, 2014, 29(1): 36
|
35 |
Bi C B, Gong W Y, Lang J F. Effect of nano-SiO2 on film hardness of flurocarbon coatings [J]. Manag. Technol. SME, 2013, (6): 295
|
35 |
毕春波, 巩维艳, 郎建峰. 纳米SiO2对氟碳涂料漆膜硬度的影响 [J]. 中小企业管理与科技, 2013, (6): 295
|
36 |
Wenzel R N. Surface roughness and contact angle [J]. J. Phys. Chem., 1949, 53: 1466
|
37 |
Cassie A B D. Contact angles [J]. Discuss. Faraday Soc., 1948, 3: 11
doi: 10.1039/df9480300011
|
38 |
Zhao T, Feng Y, Cao M L, et al. Preparation and properties of super hydrophobic and oleophobic polystyrene [J]. J. Funct. Mater., 2021, 52: 11209
doi: 10.3969/j.issn.1001-9731.2021.11.031
|
38 |
赵 霆, 凤 仪, 曹梦丽 等. 超疏水疏油聚苯乙烯的制备及性能研究 [J]. 功能材料, 2021, 52: 11209
|
39 |
Cheng S, Dong Y K, Zhang X J. Study of the influence of apparent contact angle on regular rough surface considering liquid wetting properties [J]. Mech. Sci. Technol. Aerosp. Eng., 2007, 26: 822
|
39 |
程 帅, 董云开, 张向军. 规则粗糙固体表面液体浸润性对表观接触角影响的研究 [J]. 机械科学与技术, 2007, 26: 822
|
40 |
Li X B, Liu Y. Contact angle model and wettability on the surfaces with microstructures [J]. Mater. Rep., 2009, 23(24): 101
|
40 |
李小兵, 刘 莹. 微观结构表面接触角模型及其润湿性 [J]. 材料导报, 2009, 23(24): 101
|
41 |
Jiang H Y, Zhang Y X, Liang A G, et al. Influencing factors and prediction model of material surface wettability [J]. Surf. Technol., 2018, 47(1): 60
|
41 |
蒋华义, 张亦翔, 梁爱国 等. 材料表面润湿性的影响因素及预测模型 [J]. 表面技术, 2018, 47(1): 60
|
42 |
Pourhashem S, Vaezi M R, Rashidi A. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings [J]. Surf. Coat. Technol., 2017, 311: 282
doi: 10.1016/j.surfcoat.2017.01.013
|
43 |
Li Y, Zhao Y R, Li H. Preparation and characterization of graphene oxide modified by rare earth [J]. J. Funct. Mater., 2017, 48: 10204
doi: 10.3969/j.issn.1001-9731.2017.10.036
|
43 |
李 勇, 赵亚茹, 李 焕. 稀土改性氧化石墨烯的制备及表征 [J]. 功能材料, 2017, 48: 10204
|
44 |
Conradi M, Kocijan A, Kek-Merl D, et al. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings [J]. Appl. Surf. Sci., 2014, 292: 432
doi: 10.1016/j.apsusc.2013.11.155
|
45 |
Parhizkar N, Ramezanzadeh B, Shahrabi T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets [J]. Appl. Surf. Sci., 2018, 439: 45
doi: 10.1016/j.apsusc.2017.12.240
|
46 |
Zhao D N, Wang F, Yang X S, et al. Study on the properties of graphene/expoxy resin anticorrosive coatings [J]. Chem. Eng., 2020, 34(12): 6
|
46 |
赵岱楠, 王 飞, 杨雪松 等. 石墨烯/环氧树脂防腐涂料性能研究 [J]. 化学工程师, 2020, 34(12): 6
|
47 |
Fan B, Guan Z B, Wang H J, et al. Electrochemical processes in all-solid-state Li-S batteries studied by electrochemical impedance spectroscopy [J]. Solid State Ionics, 2021, 368: 115680
doi: 10.1016/j.ssi.2021.115680
|
48 |
Yang S, Tang N, Yan M C, et al. Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227
|
48 |
杨 霜, 唐 囡, 闫茂成 等. 温度对X80管线钢酸性红壤腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 227
|
49 |
Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|