Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 107-118     CSTR: 32134.14.1005.4537.2023.012      DOI: 10.11902/1005.4537.2023.012
  研究报告 本期目录 | 过刊浏览 |
稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究
陈施润, 陈文革(), 钱颖, 张辉
西安理工大学材料科学与工程学院 西安 710048
Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating
CHEN Shirun, CHEN Wenge(), QIAN Ying, ZHANG Hui
School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

陈施润, 陈文革, 钱颖, 张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
Shirun CHEN, Wenge CHEN, Ying QIAN, Hui ZHANG. Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 107-118.

全文: PDF(15984 KB)   HTML
摘要: 

将制备的稀土铈改性石墨烯/水性环氧树脂复合涂料,以喷涂、滚涂和刷涂的方式在Q235钢表面进行涂覆,研究其组织结构及防腐性能。结果表明,稀土铈或CeO2以纳米颗粒状化学负载在石墨烯表面,改性石墨烯以小片层均匀分布在环氧树脂中。复合涂料涂覆于Q235钢表面后存在片层状石墨烯的堆叠结构。截面断口呈现河流状“银纹”。不同涂装方式制备的复合涂层的防腐机理为,喷涂法依靠高速运动的气体将雾化的涂料液滴冲击到基体表面并快速聚集、铺展成膜,在净化基体表面的同时提高涂层与基体的结合。滚涂法依靠线棒涂布器、刷涂法依靠软毛刷使涂层与基体结合,涂膜中的涂料分子易堆叠,表面易形成微孔。测得涂层附着力为0~1级,硬度达2H,面粗糙度~2 μm,腐蚀速率为1.565 × 10-4~5.889 × 10-3 mm/a。其中,喷涂法制备的涂层综合性能最好。

关键词 稀土改性石墨烯水性涂料涂装技术    
Abstract

The prepared rare earth cerium modified graphene/waterborne epoxy resin composite coating was applied on the surface of Q235 steel by spraying, rolling and brushing respectively, then of which the structure and corrosion resistance in 3.5%NaCl solution were studied. The results showed that as nano particles, rare earth cerium or CeO2 was chemically deposited on the surface of graphene, while the modified graphene was uniformly distributed in epoxy resin as small lamellae. The applied composite coating on Q235 steel presents a stacked structure of graphene lamellae, while the fractured surface of the coating presents a pattern of river-like silve stripes. The formation of the composite coating applied by different methods may be described as that: the spraying method relies on the high-speed moving gas to impact the atomized coating droplets onto the surface of the substrate and quickly gather and spread them into a film, which improves the combination of the coating to the substrate while purifying the surface of the substrate. The roller coating method relies on the wire rod coater, and the brush coating method relies on the soft brush to combine the coating with the substrate. Thus molecules in the coating are easy to stack, and mocropores may easy form on the surface. The adhesion of the coating was measured to be 0-1, the hardness was 2H, and the surface roughness was ~2 μm. The corrosion rate is 1.565 × 10-4-5.889 × 10-3 mm/a. It is found that the coating applied by spraying method has the best comprehensive performance.

Key wordsrare earth modification    graphene    water based coating    decorate method
收稿日期: 2023-01-19      32134.14.1005.4537.2023.012
ZTFLH:  TQ637  
基金资助:陕煤联合基金(2019JLM-2);西安市科技计划项目(21XJZZ0042)
通讯作者: 陈文革,E-mail:wgchen001@263.net,研究方向为功能材料
Corresponding author: CHEN Wenge, E-mail: wgchen001@263.net
作者简介: 陈施润,女,1999年生,硕士生
图1  稀土铈改性石墨烯和含改性石墨烯水性环氧树脂复合涂料的微观结构以及XRD和FT-IR分析
图2  稀土铈改性石墨烯/水性环氧树脂复合涂料的SEM图
图3  喷涂、滚涂和刷涂3种涂装方式制备的复合涂层的表面和截面SEM图
Decorate methodAdhesionHardnessWater contact angleSurface roughness /μmSurface energy / mJ·m-2
SprayingLevel 02H62.0° ± 1.8°2.7 ± 0.265.7 ± 0.7
Roller paintingLevel 12H65.3° ± 1.6°2.2 ± 0.264.4 ± 0.9
Brush paintingLevel 02H61.8° ± 1.6°2.0 ± 0.165.8 ± 0.5
表1  喷涂、滚涂和刷涂3种涂装方式制备的复合涂层的性能测试结果
图4  几种润湿模型示意图
图5  喷涂、滚涂和刷涂3种涂装方式制备的复合涂层的三维图像
图6  喷涂、滚涂和刷涂3种涂装方式制备的环氧涂层与复合涂层的极化曲线
图7  喷涂、滚涂和刷涂3种涂装方式制备的环氧涂层与复合涂层的电化学阻抗谱及等效电路拟合图
CoatingCcRc / Ω·cm2CdlRct / Ω·cm2
Y0 / Ω-1·cm-2·s nnY0 / Ω-1·cm-2·s nn
Epoxy coatingSpraying8.141 × 10-50.58329716.64.085 × 10-100.87712969.20
Roller painting1.231 × 10-50.49629218.96.201 × 10-100.88023687.00
Brush painting6.564 × 10-60.57978536.42.719 × 10-100.88124553.40
Composite coatingSpraying1.159 × 10-60.5823299051.084 × 10-90.89725593.25
Roller painting5.026 × 10-60.48179522.61.921 × 10-100.93019172.20
Brush painting8.307 × 10-60.462340574.89.006 × 10-110.95919946.80
表2  涂层电化学阻抗谱拟合参数
图8  喷涂、滚涂和刷涂3种涂装方式制备的复合涂层的防腐机制示意图
1 Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
1 李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
2 Chen M Z. Advantages and disadvantages of water-based coating [J]. Build. Tech. Dev., 2015, 42(2): 66
2 陈敏竹. 水性涂料的优势及面临的问题 [J]. 建筑技术开发, 2015, 42(2): 66
3 Liang C X, Liu Z, Zhang S F. Research progress in modification and anti-corrosion properties of waterborne coatings [J]. Mater. Prot., 2019, 52(7): 135
3 梁楚欣, 刘 峥, 张淑芬. 水性防腐蚀涂料的改性及其防腐蚀性能研究进展 [J]. 材料保护, 2019, 52(7): 135
4 Zhao X X, Li K, Li W M, et al. Study on the corrosion protection mechanism of graphene modified anticorrosive coatings [J]. China Coat., 2017, 32(2): 18
4 赵新新, 李 凯, 李伟铭 等. 石墨烯改性防腐涂料的防腐机理研究 [J]. 中国涂料, 2017, 32(2): 18
5 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
5 栾 浩, 孟凡帝, 刘 莉 等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
6 Wang Y, Li Y, Zhu J, et al. Surface modification mechanism of graphene oxide by adding rare earths [J]. J. Mater. Eng., 2018, 46(5): 29
doi: 10.11868/j.issn.1001-4381.2017.000429
6 王 莹, 李 勇, 朱 靖 等. 氧化石墨烯表面稀土改性机理 [J]. 材料工程, 2018, 46(5): 29
7 Lei Y H, Liu N X, Zhang Y L, et al. Preparation, corrosion-and wear-resistance of polymethyl methacrylate coating modified with particles of basalt/cerium oxide composite [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 597
7 类延华, 刘宁轩, 张玉良 等. 玄武岩/氧化铈改性PMMA涂层的防腐及耐磨性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 597
doi: 10.11902/1005.4537.2021.186
8 Zong Y, Song R G, Hua T S, et al. Microstructure and properties of rare earth CeO2-doped graphene composite coatings prepared by MAO on AA7050 [J]. Int. J. Mater. Res., 2021, 111: 923
doi: 10.3139/146.111871
9 Liang Q M, Wang W, Chen Z S, et al. Effects of rare earth metal oxide doping on micromorphology and corrosion behavior of hydroxyapatite-graphene oxide composite coating fabriacted on AZ91 magnesium alloy [J]. Int. J. Electrochem. Sci., 2021, 16: 210647
doi: 10.20964/2021.06.28
10 Alam R, Mobin M, Aslam J. Polypyrrole/graphene nanosheets/rare earth ions/dodecyl benzene sulfonic acid nanocomposite as a highly effective anticorrosive coating [J]. Surf. Coat. Technol., 2016, 307: 382
doi: 10.1016/j.surfcoat.2016.09.010
11 Zhang X K, Zhou Y, Liang A M, et al. Facile fabrication and corrosion behavior of iron and iron-reduced graphene oxide composite coatings by electroless plating from baths containing no reducing agent [J]. Surf. Coat. Technol., 2016, 304: 519
doi: 10.1016/j.surfcoat.2016.07.071
12 Ye Y W, Zhang D W, Liu T, et al. Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene [J]. Carbon, 2019, 142: 164
doi: 10.1016/j.carbon.2018.10.050
13 Xiao F J, Qian C, Guo M Y, et al. Anticorrosive durability of zinc-based waterborne coatings enhanced by highly dispersed and conductive polyaniline/graphene oxide composite [J]. Prog. Org. Coat., 2018, 125: 79
14 Zheng T L. Modern Coatings and Coating Engineering [M]. Beijing: Beihang University Press, 2003
14 郑天亮. 现代涂料与涂装工程 [M]. 北京: 北京航空航天大学出版社, 2003
15 Dong J C, Zhang S H, Lyu Z W, et al. Effect of base metal surface treatment on adhesion and capacitive behavior of organic coatings [J]. Shandong Chem. Ind., 2020, 49(4): 135
15 董佳晨, 张胜寒, 吕志文 等. 基底金属表面处理对有机涂层附着力和电容行为的影响 [J]. 山东化工, 2020, 49(4): 135
16 Wang H W, Mu X L, Liu C C. Effect of substrate surface state on adhesion of silane epoxy hybrid resin coating/2024 aluminium alloy [J]. Equip. Environ. Eng., 2016, 13(1): 14
16 王浩伟, 慕仙莲, 刘成臣. 基体表面状态对硅烷环氧杂化树脂涂层/2024铝合金间附着力影响 [J]. 装备环境工程, 2016, 13(1): 14
17 Zhang F, Qian H C, Wang L T, et al. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying [J]. Surf. Coat. Technol., 2018, 341: 15
doi: 10.1016/j.surfcoat.2018.01.045
18 Li J, Feng L J, Li G Z, et al. Preparation and characterization of fluorocarbon-multiwall carbon nanotube composite coatings [J]. J. Funct. Mater., 2016, 47: 3232
doi: 10.3969/j.issn.1001-9731.2016.03.043
18 李 娟, 冯拉俊, 李光照 等. 氟碳漆/碳纳米管导电防腐涂层的制备及表征 [J]. 功能材料, 2016, 47: 3232
19 Dong Y H. Anti-corrosion effect of magnesium phosphate cement coating on carbon steel [D]. Xi'an: Southwest Jiaotong University, 2017
19 董英豪. 碳钢表面磷酸镁水泥涂层的防腐性研究 [D]. 西安: 西南交通大学, 2017
20 The State Bureau of Quality and Technical Supervision. Paints and varnishes-Cross cut test for films [S]. Beijing: Standards Press of China, 1999
20 国家质量技术监督局. 色漆和清漆 漆膜的划格试验 [S]. 北京: 中国标准出版社, 1999
21 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes - Determination of film hardness by pencil test [S]. Beijing: Standards Press of China, 2007
21 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 铅笔法测定漆膜硬度 [S]. 北京: 中国标准出版社, 2007
22 Zhu D Y, Zhang Y C, Dai P Q, et al. Novel characterization of wetting properties and the calculation of liquid-solid interface tension (Ⅱ) [J]. Sci. Technol. Eng., 2007, 7: 3063
22 朱定一, 张远超, 戴品强 等. 润湿性表征体系及液固界面张力计算的新方法(Ⅱ) [J]. 科学技术与工程, 2007, 7: 3063
23 Yu Z X, Di H H, Ma Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings [J]. Surf. Coat. Technol., 2015, 276: 471
doi: 10.1016/j.surfcoat.2015.06.027
24 El-Rahman M A, Mohamed L A L, Said N M. Effect of high gamma irradiation doses on structure and morphology properties for Epoxy resins [J]. Optik, 2021, 226: 165674
25 Naeem M, Kuan H C, Michelmore A, et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving [J]. Carbon, 2021, 177: 271
doi: 10.1016/j.carbon.2021.02.059
26 Wei B Z, Chen W C, Zhu X, et al. Study of electroless plating Cu by reduced graphene oxide and the effects on the microstructures and properties of RGO/Cu composites [J]. Powder Metall. Technol., 2018, 36: 363
26 魏邦争, 陈闻超, 朱 曦 等. 石墨烯化学镀铜及其对石墨烯/铜基复合材料组织性能的影响 [J]. 粉末冶金技术, 2018, 36: 363
doi: 10.19591/j.cnki.cn11-1974/tf.2018.05.008
27 Zaman I, Kuan H C, Meng Q S, et al. A facile approach to chemically modified graphene and its polymer nanocomposites [J]. Adv. Funct. Mater., 2012, 22: 2735
doi: 10.1002/adfm.v22.13
28 Guan L Z, Wan Y J, Gong L X, et al. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide [J]. J. Mater. Chem., 2014, 2A: 15058
29 Wang X, Li Y, Li C, et al. Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments [J]. Corros. Sci., 2020, 176: 109049
doi: 10.1016/j.corsci.2020.109049
30 Contu F, Fenzy L, Taylor S R. An FT-IR investigation of epoxy coatings as a function of electrolyte composition [J]. Prog. Org. Coat., 2012, 75: 92
doi: 10.1016/j.porgcoat.2012.04.001
31 Hao S S, Sun X F, Song W, et al. Effect of modified graphene on corrosion resistance of epoxy resin coating [J]. Paint Coat. Ind., 2018, 48(12): 34
31 郝松松, 孙晓峰, 宋 巍 等. 改性石墨烯对环氧树脂涂层耐腐蚀性能的影响 [J]. 涂料工业, 2018, 48(12): 34
32 Wang J F, Jin X X, Li C H, et al. Graphene and graphene derivatives toughening polymers: toward high toughness and strength [J]. Chem. Eng. J., 2019, 370: 831
doi: 10.1016/j.cej.2019.03.229
33 Wang J F, Li C H, Zhang X M, et al. Polycarbonate toughening with reduced graphene oxide: toward high toughness, strength and notch resistance [J]. Chem. Eng. J., 2017, 325: 474
doi: 10.1016/j.cej.2017.05.090
34 Mao J Y, Peng R S. Study on new PPS composite coating preparation and performance [J]. Dev. Appl. Mater., 2014, 29(1): 36
34 毛杰勇, 彭如恕. 新型聚苯硫醚复合涂层的制备和性能研究 [J]. 材料开发与应用, 2014, 29(1): 36
35 Bi C B, Gong W Y, Lang J F. Effect of nano-SiO2 on film hardness of flurocarbon coatings [J]. Manag. Technol. SME, 2013, (6): 295
35 毕春波, 巩维艳, 郎建峰. 纳米SiO2对氟碳涂料漆膜硬度的影响 [J]. 中小企业管理与科技, 2013, (6): 295
36 Wenzel R N. Surface roughness and contact angle [J]. J. Phys. Chem., 1949, 53: 1466
37 Cassie A B D. Contact angles [J]. Discuss. Faraday Soc., 1948, 3: 11
doi: 10.1039/df9480300011
38 Zhao T, Feng Y, Cao M L, et al. Preparation and properties of super hydrophobic and oleophobic polystyrene [J]. J. Funct. Mater., 2021, 52: 11209
doi: 10.3969/j.issn.1001-9731.2021.11.031
38 赵 霆, 凤 仪, 曹梦丽 等. 超疏水疏油聚苯乙烯的制备及性能研究 [J]. 功能材料, 2021, 52: 11209
39 Cheng S, Dong Y K, Zhang X J. Study of the influence of apparent contact angle on regular rough surface considering liquid wetting properties [J]. Mech. Sci. Technol. Aerosp. Eng., 2007, 26: 822
39 程 帅, 董云开, 张向军. 规则粗糙固体表面液体浸润性对表观接触角影响的研究 [J]. 机械科学与技术, 2007, 26: 822
40 Li X B, Liu Y. Contact angle model and wettability on the surfaces with microstructures [J]. Mater. Rep., 2009, 23(24): 101
40 李小兵, 刘 莹. 微观结构表面接触角模型及其润湿性 [J]. 材料导报, 2009, 23(24): 101
41 Jiang H Y, Zhang Y X, Liang A G, et al. Influencing factors and prediction model of material surface wettability [J]. Surf. Technol., 2018, 47(1): 60
41 蒋华义, 张亦翔, 梁爱国 等. 材料表面润湿性的影响因素及预测模型 [J]. 表面技术, 2018, 47(1): 60
42 Pourhashem S, Vaezi M R, Rashidi A. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings [J]. Surf. Coat. Technol., 2017, 311: 282
doi: 10.1016/j.surfcoat.2017.01.013
43 Li Y, Zhao Y R, Li H. Preparation and characterization of graphene oxide modified by rare earth [J]. J. Funct. Mater., 2017, 48: 10204
doi: 10.3969/j.issn.1001-9731.2017.10.036
43 李 勇, 赵亚茹, 李 焕. 稀土改性氧化石墨烯的制备及表征 [J]. 功能材料, 2017, 48: 10204
44 Conradi M, Kocijan A, Kek-Merl D, et al. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings [J]. Appl. Surf. Sci., 2014, 292: 432
doi: 10.1016/j.apsusc.2013.11.155
45 Parhizkar N, Ramezanzadeh B, Shahrabi T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets [J]. Appl. Surf. Sci., 2018, 439: 45
doi: 10.1016/j.apsusc.2017.12.240
46 Zhao D N, Wang F, Yang X S, et al. Study on the properties of graphene/expoxy resin anticorrosive coatings [J]. Chem. Eng., 2020, 34(12): 6
46 赵岱楠, 王 飞, 杨雪松 等. 石墨烯/环氧树脂防腐涂料性能研究 [J]. 化学工程师, 2020, 34(12): 6
47 Fan B, Guan Z B, Wang H J, et al. Electrochemical processes in all-solid-state Li-S batteries studied by electrochemical impedance spectroscopy [J]. Solid State Ionics, 2021, 368: 115680
doi: 10.1016/j.ssi.2021.115680
48 Yang S, Tang N, Yan M C, et al. Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227
48 杨 霜, 唐 囡, 闫茂成 等. 温度对X80管线钢酸性红壤腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2015, 35: 227
49 Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters [J]. Electrochim. Acta, 2010, 55: 6218
doi: 10.1016/j.electacta.2009.10.065
[1] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[2] 栾浩, 孟凡帝, 刘莉, 崔宇, 刘叡, 郑宏鹏, 王福会. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[3] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[4] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[5] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[6] 孙广平; 贾树盛; 朱先勇; 郝博; 于妍 . 热固性丙稀酸酯类-壳结构互穿网络水性阻尼涂料的动态力学性能[J]. 中国腐蚀与防护学报, 2004, 24(1): 41-44 .