Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (6): 1284-1292     CSTR: 32134.14.1005.4537.2022.407      DOI: 10.11902/1005.4537.2022.407
  研究报告 本期目录 | 过刊浏览 |
四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究
任岩1(), 张鑫涛2,3, 盖欣1, 徐敬军2, 张伟1, 陈勇1, 李美栓2
1.中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学技术大学 材料科学与工程学院 沈阳 110016
High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam
REN Yan1(), ZHANG Xintao2,3, GAI Xin1, XU Jingjun2, ZHANG Wei1, CHEN Yong1, LI Meishuan2
1.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

任岩, 张鑫涛, 盖欣, 徐敬军, 张伟, 陈勇, 李美栓. 四元MAX(Cr2/3Ti1/3)3AlC2 在高温空气以及水蒸气气氛中的氧化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
Yan REN, Xintao ZHANG, Xin GAI, Jingjun XU, Wei ZHANG, Yong CHEN, Meishuan LI. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1284-1292.

全文: PDF(18418 KB)   HTML
摘要: 

采用恒温氧化法研究了四元MAX相(Cr2/3Ti1/3)3AlC2在高温空气以及水蒸气气氛中的氧化行为。(Cr2/3Ti1/3)3AlC2在800~1200 ℃下空气中以及1000~1200 ℃下水蒸气中氧化后表面均形成包含Al2O3、TiO2和Cr2O3的氧化膜,使其具有良好的抗高温氧化性能。(Cr2/3Ti1/3)3AlC2在1200 ℃下空气/水蒸气中氧化生成由外到内分别为富Ti层、富Cr层和富Al层的氧化膜,该氧化膜的形成与(Cr2/3Ti1/3)3AlC2中元素的选择性氧化和扩散有关。研究结果表明,(Cr2/3Ti1/3)3AlC2在高温空气/水蒸气中均表现出良好的抗氧化性能。

关键词 MAX相高温氧化核反应堆    
Abstract

The oxidation behavior of quaternary (Cr2/3Ti1/3)3AlC2 MAX ceramic at high temperatures in air and steam was investigated by isothermal oxidation test. The good oxidation resistance of (Cr2/3Ti1/3)3AlC2 at 800-1200 ℃ in air and at 1000-1200 ℃ in steam may be ascribed to the oxide scale with Al2O3, TiO2 and Cr2O3 formed on the surface of (Cr2/3Ti1/3)3AlC2 during oxidation. An oxide scale with external Ti-rich layer, intermediate Cr-rich layer and internal Al-rich layer was formed on the surface of (Cr2/3Ti1/3)3AlC2 during oxidation at 1200 ℃ in air/steam. The structure of the oxide scale was affected by the selective oxidation and diffusion of elements in (Cr2/3Ti1/3)3AlC2. The results indicate that (Cr2/3Ti1/3)3AlC2 exhibit good oxidation resistance in high temperature air/steam.

Key wordsMAX phase    high temperature oxidation    nuclear reactor
收稿日期: 2022-12-23      32134.14.1005.4537.2022.407
ZTFLH:  TB321  
基金资助:国防科技重点实验室基金-稳定支持(6142A06030107)
通讯作者: 任岩,E-mail: yren2021@qq.com,研究方向为高温结构材料及防护涂层
Corresponding author: REN Yan, E-mail: yren2021@qq.com
作者简介: 任岩,男,1993年生,博士,助理研究员
图1  (Cr2/3Ti1/3)3AlC2的表面宏观照片,XRD谱图和表面微观形貌
图2  (Cr2/3Ti1/3)3AlC2在800、1000和1200 ℃下空气中氧化后的表面宏观照片
图3  (Cr2/3Ti1/3)3AlC2在800、1000和1200 ℃下空气中氧化后的表面X射线衍射谱图
图4  (Cr2/3Ti1/3)3AlC2在800,1000和1200 ℃下空气中氧化后的表面微观形貌
图5  (Cr2/3Ti1/3)3AlC2在800 ℃下空气中氧化后的截面微观形貌及元素分布
图6  (Cr2/3Ti1/3)3AlC2在1000 ℃下空气中氧化后的截面微观形貌及元素分布
图7  (Cr2/3Ti1/3)3AlC2在1200 ℃下空气中氧化后的截面微观形貌及元素分布
图8  (Cr2/3Ti1/3)3AlC2在1000和1200 ℃下水蒸气中的氧化动力学曲线
图9  (Cr2/3Ti1/3)3AlC2在1000和1200 ℃下水蒸气中氧化后的表面宏观照片
图10  (Cr2/3Ti1/3)3AlC2在1000和1200 ℃下水蒸气中氧化后的表面X射线衍射谱图
图11  (Cr2/3Ti1/3)3AlC2在1000和1200 ℃下水蒸气中氧化后的表面微观形貌
SampleCr KTi KAl KO K
1#26.1222.718.7242.45
2#23.6825.525.4945.32
3#11.2143.045.3140.44
表1  水蒸气中氧化后表面能谱分析结果 (atomic fraction / %)
图12  (Cr2/3Ti1/3)3AlC2在1000 ℃下水蒸气中氧化后的截面微观形貌及元素分布
图13  (Cr2/3Ti1/3)3AlC2在1200 ℃下水蒸气中氧化后的截面微观形貌及元素分布
1 Barsoum M W. The M N+1AX N phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
doi: 10.1016/S0079-6786(00)00006-6
2 Tian L, Fu C, Li Y M, et al. MAX phase: Synthesis, structure and property [J]. Prog. Phys., 2021, 41: 39
2 田 莉, 付 超, 李月明 等. MAX相陶瓷的结构、制备及物理性能研究 [J]. 物理学进展, 2021, 41: 39
3 Tallman D J, He L F, Gan J, et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121-1085 °C temperature range [J]. J. Nucl. Mater., 2017, 484: 120
doi: 10.1016/j.jnucmat.2016.11.016
4 Bugnet M, Cabioc'h T, Mauchamp V, et al. Stability of the nitrogen-deficient Ti2AlN x MAX phase in Ar2+-irradiated (Ti, Al)N/Ti2AlN x multilayers [J]. J. Mater. Sci., 2010, 45: 5547
doi: 10.1007/s10853-010-4615-0
5 Qiu B W, Wang J, Deng Y B, et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding [J]. Nucl. Eng. Technol., 2020, 52: 1
doi: 10.1016/j.net.2019.07.030
6 Cheng X Y, Liu R Z, Liu M L, et al. Applications of carbide ceramics in nuclear reactors [J]. Chin. Sci. Bull., 2021, 66: 3154
doi: 10.1360/TB-2020-1316
7 Heinzel A, Weisenburger A, Müller G. Long-term corrosion tests of Ti3SiC2 and Ti2AlC in oxygen containing LBE at temperatures up to 700 °C [J]. J. Nucl. Mater., 2016, 482: 114
doi: 10.1016/j.jnucmat.2016.10.007
8 Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
9 Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 6: 899
9 徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 6: 899
10 Shen Z, Zhang L F, Zhu F W, et al. Corrosion behavior of candidate SCWR fuel cladding materials [J]. J. Chin. Soc. Corros. Prot., 2014, 4: 301
10 沈 朝, 张乐福, 朱发文 等. 超临界水冷堆燃料包壳候选材料的耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2014, 4: 301
11 Zheng L Y, Wang J Y, Chen J X, et al. Strengthening of Ti3(Si,Al)C2 by Doping with Tungsten [J]. J. Am. Ceram. Soc., 2012, 95: 3726
doi: 10.1111/jace.2012.95.issue-12
12 Zhang H B, Zhou Y C, Bao Y W, et al. Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution [J]. Acta Mater., 2004, 52: 3631
doi: 10.1016/j.actamat.2004.04.015
13 Liu Z M, Wu E D, Wang J M, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase [J]. Acta Mater., 2014, 73: 186
doi: 10.1016/j.actamat.2014.04.006
14 Liu Z M, Zheng L Y, Sun L C, et al. (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4-AlC3: New MAX-phase compounds in Ti-Cr-Al-C system [J]. J. Am. Ceram. Soc., 2014, 97: 67
doi: 10.1111/jace.2014.97.issue-1
15 Liu Z M. Investigations on synthesis, crystal structure and related properties of a new quaternary MAX phase-(Cr2/3Ti 1/3)3AlC2 [D]. Shenyang: University of Chinese Academy of Sciences, 2015
15 刘智谋. 新型四元MAX相(Cr2/3Ti 1/3)3AlC2的合成、晶体结构表征及性能研究 [D]. 沈阳: 中国科学院大学, 2015
16 Hu C F, Lin Z J, He L F, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method [J]. J. Am. Ceram. Soc., 2007, 90: 2542
doi: 10.1111/jace.2007.90.issue-8
17 Wan D T, He L F, Zheng L L, et al. A new method to improve the high-temperature mechanical properties of Ti3SiC2 by substituting Ti with Zr, Hf, or Nb [J]. J. Am. Ceram. Soc., 2010, 93: 1749
doi: 10.1111/jace.2010.93.issue-6
18 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001
18 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
19 Shi H, Tang C C, Jianu A, et al. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200  °C [J]. Corros. Sci., 2020, 170: 108654
doi: 10.1016/j.corsci.2020.108654
20 Liu Z M, Yang J, Qian Y H, et al. High temperature oxidation behavior of quaternary ordered (Cr2/3Ti1/3)3AlC2-based MAX ceramic [J]. Corros. Sci., 2021, 183: 109317
doi: 10.1016/j.corsci.2021.109317
21 Lei Y M. Design, synthesis and properties of protective coatings for accident tolerant fuels [D]. Shenyang: University of Science and Technology of China, 2021
21 雷一明. 几种事故容错燃料包壳涂层的设计、制备与性能研究 [D]. 沈阳: 中国科学技术大学, 2021
22 Tang C C, Große M, Ulrich S, et al. High-temperature oxidation and hydrothermal corrosion of textured Cr2AlC-based coatings on zirconium alloy fuel cladding [J]. Surf. Coat. Technol., 2021, 419: 127263
23 Ougier M, Michau A, Lomello F, et al. High-temperature oxidation behavior of HiPIMS as-deposited Cr-Al-C and annealed Cr2AlC coatings on Zr-based alloy [J]. J. Nucl. Mater., 2020, 528: 151855
24 Kim D, Sah I, Lee H J, et al. Hydrogen effects on oxidation behaviors of Haynes 230 in high temperature steam environments [J]. Solid State Ion., 2013, 243: 1
doi: 10.1016/j.ssi.2013.04.010
[1] 於琛钧, 张天翼, 张乃强, 朱忠亮. 组织老化对P92钢在超临界水中氧化行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[3] 贺南开, 王永欣, 周升国, 周大朋, 李金龙. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[4] 刘欢欢, 刘光明, 李富天, 孟令奇, 夏侯俊招, 顾佳磊. TP439不锈钢在800 ℃高温水蒸气中的初期氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[5] 刘云, 任延杰, 陈荐, 周立波, 邱玮, 黄伟颖, 牛焱. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[6] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[7] 任延杰, 吕云蕾, 戴汀, 郭晓慧, 陈荐, 周立波, 邱玮, 牛焱. 三元Co-Ni-Al合金在800~1000 ℃纯氧中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[8] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[9] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[10] 张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[11] 王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[12] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[13] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[14] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[15] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.