Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1064-1070     CSTR: 32134.14.1005.4537.2022.319      DOI: 10.11902/1005.4537.2022.319
  研究报告 本期目录 | 过刊浏览 |
流速对碳钢弯管段流动加速腐蚀速率的影响
潘代龙, 司晓东(), 吕金洪
江苏科技大学能源与动力学院 镇江 212100
Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow
PAN Dailong, SI Xiaodong(), LV Jinhong
School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
全文: PDF(4590 KB)   HTML
摘要: 

利用自行设计的流动加速腐蚀实验台和阵列电极技术研究了120 ℃下不同流速对20#碳钢弯管段流动加速腐蚀速率分布的影响。并基于流体动力学模拟分析了流体动力学参数与腐蚀速率之间的关联。结果表明:不同的流速下,最大腐蚀电流密度位于弯管外弯侧。随着流速的增大,流动加速腐蚀速率显著提高。此外,通过实验与模拟结果对比表明,径向局部速度分量可作为预测碳钢弯管段流动加速腐蚀速率大小的重要参数。基于最小二乘法拟合获得了径向局部速度分量与腐蚀速率间的经验公式。本研究可应用于火电、核电和化工等工业碳钢弯管运输管路的设计优化、运行监测和检修维护策略的制定。

关键词 弯管段流动加速腐蚀电化学数值模拟流体动力学    
Abstract

Carbon steel is the main material for power plants, oil and gas pipelines. Flow accelerated corrosion is the main factor causing pipeline failure in power plants, especially the secondary circuit pipeline system of the pressurized water reactor (PWR) nuclear power plant. In this paper, a home-made flow accelerated corrosion test rig and array electrode technology was used to study the effect of different flow rates on the flow accelerated corrosion rate distribution of 20# carbon steel elbow at 120 °C. The correlation between hydrodynamic parameters and corrosion rate was analyzed based on hydrodynamic simulation. The results show that the maximum corrosion current density is located at the external bending side of the elbow at different flow rates. With the increase of flow velocity, the flow accelerated corrosion rate increased significantly. In addition, the comparison of experimental data and simulation results show that the radial local velocity component can be used as an important parameter to predict the flow accelerated corrosion rate of carbon steel elbow. The empirical formula between the radial local velocity component and the corrosion rate was obtained by fitting based on the least square method. This research can be applied to design optimization, operation monitoring and maintenance strategy formulation of carbon steel elbow transport lines in thermal power, nuclear power and chemical industries.

Key wordselbow    flow accelerated corrosion    electrochemistry    numerical simulation    hydrodynamics
收稿日期: 2022-10-17      32134.14.1005.4537.2022.319
ZTFLH:  TG174  
基金资助:江苏省双创博士项目(JSSCBS20210994)
通讯作者: 司晓东,E-mail: Xiaod_Si@163.com,研究方向为流动加速腐蚀   
Corresponding author: SI Xiaodong, E-mail: Xiaod_Si@163.com   
作者简介: 潘代龙,男,2001年生,本科生

引用本文:

潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1064-1070.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.319      或      https://www.jcscp.org/CN/Y2023/V43/I5/1064

图1  高温循环回路实验系统图
图2  实验段阵列电极安装及测点分布示意图
图3  不同流速条件下弯管段典型阵列电极Nyquist图
图4  电化学阻抗谱的拟合等效电路图
图5  不同流速下弯管实验段阵列工作电极的电荷传递电阻和腐蚀电流密度
PositionRct / Ω·cm2Icorr / μA·cm-2
12341234
A114501375120082017.7218.6821.4131.33
A313901350116175018.4819.0322.1234.25
A515001400125092517.1218.3520.5527.77
B117001550122691015.1116.5720.9628.23
B41300115092273019.7622.3427.8735.19
B716001450124093016.0517.7220.7227.62
表1  不同流速下典型位置阵列工作电极的电荷转移电阻和腐蚀电流密度
图6  各流体动力学参数与腐蚀电流密度比较
图7  径向局部速度与腐蚀电流密度的比较
图8  不同流速下径向局部速度与腐蚀电流密度的比较
图9  弯管实验段不同流速的腐蚀电流密度和Vr的拟合关系
1 Zhang G J. Research on the mechanism of flow accelerated corrosion and its countermeasures of water-steam system in power station [D]. Baoding: North China Electric Power University, 2014
1 张国军. 电站汽水系统流动加速腐蚀机理及对策研究 [D]. 保定: 华北电力大学, 2014
2 Lu X F, Zhu X L, Ling X. A novel model for predicting flow accelerated corrosion rate in reducer [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 431
2 陆晓峰, 朱晓磊, 凌 祥. 一种预测异径管流动加速腐蚀速率的新模型 [J]. 中国腐蚀与防护学报, 2011, 31: 431
3 Jiang S, Chai F, Su H, et al. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution [J]. Corros. Sci., 2017, 123: 217
doi: 10.1016/j.corsci.2017.04.024
4 Yang X Y, Guan L, Li Y, et al. Numerical simulation and experimental study on erosion-corrosion of square elbow based on orthogonal test [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 979
4 杨湘愚, 关 蕾, 李 雨 等. 基于正交实验的90°弯管冲刷腐蚀数值模拟及实验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 979
doi: 10.11902/1005.4537.2021.325
5 Kim S, Kim J W, Kim J H. Enhancement of corrosion resistance in carbon steels using nickel-phosphorous/titanium dioxide nanocomposite coatings under high-temperature flowing water [J]. J. Alloy. Compd., 2017, 698: 267
doi: 10.1016/j.jallcom.2016.12.027
6 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
6 葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
7 Lin T, Zhou K Y, Si X D. Research progress on flow-accelerated corrosion of power plant and contermeasures [J]. Corros. Sci. Prot. Technol., 2018, 30: 543
7 林 彤, 周克毅, 司晓东. 电厂机组流动加速腐蚀研究进展及防护措施 [J]. 腐蚀科学与防护技术, 2018, 30: 543
8 Wang K, Nan C H, Lu J L. Mechanism of hydrodynamic process in flow corrosion behavior [J]. Chem. Ind. Eng. Prog., 2020, 39(suppl. 2) : 8
8 王 凯, 南翠红, 卢金玲. 流体动力学过程在流动腐蚀行为中的作用机制 [J]. 化工进展, 2020, 39(): 8
9 Pan D L, Si X D, Zhang J, et al. Experimental study on flow-accelerated corrosion at elbow of carbon steel at different temperatures [J]. Therm. Power Gener., 2022, 51(7): 110
9 潘代龙, 司晓东, 张 静 等. 碳钢弯管段在不同温度下流动加速腐蚀性能实验研究 [J]. 热力发电, 2022, 51(7): 110
10 Dooley R B. Flow-accelerated corrosion in fossil and combined cycle/HRSG plants [J]. Power Plant Chem., 2008, 10: 68
11 Chen H L, Ma L, Huang G S, et al. Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724
11 陈翰林, 马 力, 黄国胜 等. 溶解氧和流速对B30铜镍合金在海水中成膜的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 724
doi: 10.11902/1005.4537.2021.260
12 Zhang G Y, Gu Y, Shao J. Cause analysis on FAC failures of steam/water piping in secondary loop of PWR power plants and the countermeasures [J]. J. Chin. Soc. Power Eng., 2012, 32: 170
12 张桂英, 顾 宇, 邵 杰. 核电站汽水管道流动加速腐蚀的影响因素分析及对策 [J]. 动力工程学报, 2012, 32: 170
13 Fujiwara K, Domae M, Yoneda K, et al. Model of physico-chemical effect on flow accelerated corrosion in power plant [J]. Corros. Sci., 2011, 53: 3526
doi: 10.1016/j.corsci.2011.06.027
14 Talaat K, Hassan M M, Cakez C, et al. Design of specimen holders for flow accelerated corrosion experiments in molten lead with numerical evaluation of pressure losses [J]. Nucl. Eng. Des., 2021, 385: 111522
doi: 10.1016/j.nucengdes.2021.111522
15 Bandeira R M, van Drunen J, Garcia A C, et al. Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy [J]. Electrochim. Acta, 2017, 240: 215
doi: 10.1016/j.electacta.2017.04.083
16 Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
17 Zeng L, Zhang G A, Guo X P. Erosion–corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
doi: 10.1016/j.corsci.2014.04.045
18 Si X D, Si H T, Li M Y, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation [J]. Mater. Corros., 2020, 71: 1637
19 Utanohara Y, Murase M. Influence of flow velocity and temperature on flow accelerated corrosion rate at an elbow pipe [J]. Nucl. Eng. Des., 2019, 342: 20
doi: 10.1016/j.nucengdes.2018.11.022
20 Dean W R. Fluid motion in a curved channel [J]. Proc. Roy. Soc. Lond., 1928, 121A: 402
21 Si X D, Zhang R, Xu Q, et al. Effects of local velocity components on flow-accelerated corrosion at 90° elbow [J]. Mater. Res. Express, 2019, 6: 016557
[1] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[2] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[3] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[4] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[5] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[6] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[7] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[8] 于英杰, 李瑛. 电化学-电感耦合等离子体原子发射光谱联用技术及其在金属腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(4): 847-854.
[9] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[10] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[11] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[12] 尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[13] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[14] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[15] 郭姿含, 张军, 李晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.