Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1126-1132     CSTR: 32134.14.1005.4537.2022.390      DOI: 10.11902/1005.4537.2022.390
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
低表面处理环氧防腐底漆的制备及其耐蚀性研究
陈肖寒(), 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良
海洋化工研究院有限公司 海洋涂料国家重点实验室 青岛 266071
Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer
CHEN Xiaohan(), BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang
Marine Chemical Research Institute Co., Ltd., State Key Laboratory of Marine Coatings, Qingdao 266071, China
全文: PDF(7002 KB)   HTML
摘要: 

在Sa2等级的钢材表面制备出一种低表面处理环氧防腐底漆,其固含高达80%,实干速度只需4 h,平均附着力可达10 MPa,室外暴晒5 a涂层无任何开裂、脱落,且耐酸、碱、盐溶液腐蚀性能优异。利用Fourier红外光谱 (FTIR)、电化学阻抗谱技术 (EIS) 和三维视频显微镜对涂层的电化学性能和耐蚀机理进行了研究,结果表明,经过2400 h海水浸泡,涂层阻抗可达1010 Ω·cm2,耐海水腐蚀性能优异,阻抗值随浸泡时间的延长先减小后增大。环氧树脂和聚酰胺固化交联形成的致密涂层对腐蚀介质起到了很好的屏蔽作用,中后期磷酸锌颜料与钢材表面铁锈反应生成的稳定络合物阻止了腐蚀介质的渗入,是其耐腐蚀和实现低表面处理的关键。

关键词 环氧防腐底漆低表面处理电化学阻抗耐蚀性    
Abstract

A surface-tolerant epoxy anticorrosive primer was prepared on the surface of Sa2 grade steel. Its solid content was up to 80%, the drying speed was only 4 h, and the average adhesion was up to 10 MPa. The coating keeps intact with no cracking and no spallation after outdoor exposure for 5 a, and has excellent corrosion resistance to acid, alkali and salt solution. The electrochemical performance and corrosion mechanism of the coating were studied by means of FTIR, EIS and three-dimensional video microscope. The results showed that the impedance of the coating reached 1010 Ω·cm2 after 2400 h seawater immersion, which showed excellent corrosion resistance. The impedance of the coating decreased first and then increased with the extension of immersion time. The densification of the coating is due to the cross-linking of epoxy resin and polyamide curing, so that can act as a good barrier to the corrosive medium. During the middle and late stage of the corrosion process, the stable complex formed by the reaction of zinc phosphate pigment with the rust on steel surface, can prevent the infiltration of corrosive medium, which may be the reason why the coating has excellent corrosion resistance and high tolerance to the substrate surface.

Key wordsepoxy anticorrosive primer    low surface treatment    electrochemical impedance    corrosion resistance
收稿日期: 2022-12-07      32134.14.1005.4537.2022.390
ZTFLH:  TG174  
基金资助:山东省博士后创新项目和青岛市博士后应用研究项目
通讯作者: 陈肖寒,E-mail: 2906612880@qq.com,研究方向为防腐涂层及功能涂层技术研究   
Corresponding author: CHEN Xiaohan, E-mail: 2906612880@qq.com   
作者简介: 陈肖寒,男,1998年生,硕士生,助理工程师

引用本文:

陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1126-1132.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.390      或      https://www.jcscp.org/CN/Y2023/V43/I5/1126

图1  不同环境条件下试样涂层宏观形貌图
图2  涂层经2400 h海水浸泡的EIS图
图3  涂层浸泡初期及中后期等效电路模型图
图4  C-1涂层及A、B组分的FTIR图谱
图5  2400 h海水浸泡前后C-1涂层表面形貌
图6  C-1涂层防腐机理示意图
1 Brezoi D V. Anticorrosive polymeric coatings [J]. Sci. Bull, 2022, 18: 33
2 El-Shamy O A A, Deyab M A. Novel anticorrosive coatings based on nanocomposites of epoxy, chitosan, and silver [J]. Mater. Lett., 2023, 330: 133298
doi: 10.1016/j.matlet.2022.133298
3 Assad H, Fatma I, Kumar A. An overview of the application of graphene-based materials in anticorrosive coatings [J]. Mater. Lett., 2023, 330: 133287
doi: 10.1016/j.matlet.2022.133287
4 Liu L, Shao Z Y, Jia T Y, et al. Research progress on application of halloysite nanotubes for modification of smart anti-corrosion coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 523
4 刘 玲, 邵紫雅, 贾天越 等. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 523
5 Qu Z P, Tian X L, Wang Y T, et al. Research progress on corrosion behavior and key influencing factors for structural materials of waste power plant boiler [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 839
5 曲作鹏, 田欣利, 王永田 等. 垃圾电站锅炉腐蚀速度及关键影响因素研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 839
doi: 10.11902/1005.4537.2021.245
6 Wang H K. Worldwide corrosion day and thinking of corrosion prevention & control [J]. Plat. Finish., 2013, 35(5): 19
6 王洪奎. 世界腐蚀日及腐蚀防控的思考 [J]. 电镀与精饰, 2013, 35(5): 19
7 Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
7 周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望 [J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
8 Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
8 王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929
doi: 10.11902/1005.4537.2022.133
9 Lin M C, Wang Y F, Wang R G, et al. The synergetic effect of tannic acid as adhesion promoter in electrodeposition of polypyrrole on copper for corrosion protection [J]. Mater. Chem. Phys., 2023, 294: 126991
doi: 10.1016/j.matchemphys.2022.126991
10 Cao Y H, Wang J J, Chen K F, et al. A comparative study of chloride adsorption ability and corrosion protection effect in epoxy coatings of various layered double hydroxides [J]. Coatings, 2022, 12: 1631
doi: 10.3390/coatings12111631
11 Li T, Zhao S R, Sheng X X, et al. In-situ growth and excellent corrosion protection properties of molybdenum dioxide/boron nitride heterojunction composites [J]. Prog. Org. Coat., 2023, 174: 107289
12 Al-Masoud M A, Khalaf M M, Heakal F E T, et al. Advanced Protective Films Based on Binary ZnO-NiO@polyaniline Nanocomposite for Acidic Chloride Steel Corrosion: An Integrated Study of Theoretical and Practical Investigations [J]. Polymers, 2022, 14: 4734
doi: 10.3390/polym14214734
13 Zhou S X, Li W J, Ai Z Y, et al. Research progress of inorganic silicate zinc-rich anticorrosive coating [J]. Mater. Prot., 2022, 55(8): 1
13 周双喜, 李伟杰, 艾志勇 等. 无机硅酸盐富锌防腐涂料的研究进展 [J]. 材料保护, 2022, 55(8): 1
14 Zhang G Q, Yu X, Liu H J. Design and application of hot water immersion testing for anticorrosion coating of deep-water pipeline [J]. Paint. Coat. Ind., 2022, 52(9): 81
14 张国庆, 于 萱, 刘洪娟. 深水管道防腐涂层耐热水浸泡试验设计及应用研究 [J]. 涂料工业, 2022, 52(9): 81
15 Cao J Y, Zang B L, Cao B X, et al. Influence of chemical bonding interface of modified basalt/epoxy coating on its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1009
15 曹京宜, 臧勃林, 曹宝学 等. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 1009
doi: 10.11902/1005.4537.2021.312
16 Zhang Y B, Qin Z H, Lei X J, et al. Waterborne epoxy primer and its preparation method [J]. Paint. Coat. Ind., 2020, 50(5): 41
16 张育波, 秦中海, 雷晓进 等. 水性环氧底漆及其制备方法 [J]. 涂料工业, 2020, 50(5): 41
17 Jun J, Sabau A S, Stephens M S. Corrosion behavior of laser-interference structured AA2024 coated with a chromate-containing epoxy primer [J]. Corrosion, 2021, 77: 577
doi: 10.5006/3717
18 Li J Y, Dai D Y, Qian C, et al. Corrosion behavior of PANI nanofiber/modified GO/waterborne epoxy composite coating on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 156
18 李建永, 代殿宇, 钱 程 等. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 156
doi: 10.11902/1005.4537.2020.271
19 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
19 高浩东, 崔 宇, 刘莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
20 Zhang Z H, Han D S, Zhang A L. Study on preparation surface-tolerant coating on high-chromium steel [J]. Plat. Finish., 2021, 43(3): 47
20 张芷豪, 韩东山, 张爱黎. 高铬钢低表面处理涂料制备研究 [J]. 电镀与精饰, 2021, 43(3): 47
21 Cao J Y, Yang Y G, Fang Z G, et al. Failure behavior of fresh water tank coating in different water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 209
21 曹京宜, 杨延格, 方志刚 等. 淡水舱涂层在不同水环境中的失效行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 209
doi: 10.11902/1005.4537.2021.008
22 Wang Q J, Wu L H, Wang Y. New applications of low surface treatment coatings [J]. Mod. Paint Finish., 2021, 24(9): 23
22 王庆军, 武林华, 王 煜. 低表面处理涂料新应用 [J]. 现代涂料与涂装, 2021, 24(9): 23
23 Sun W S, Yu S R, Gao S, et al. Molecular dynamics simulation of water molecule diffusion in graphene-reinforced epoxy resin anticorrosive coatings [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 411
23 孙伟松, 于思荣, 高 嵩 等. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟 [J]. 中国腐蚀与防护学报, 2021, 41: 411
doi: 10.11902/1005.4537.2020.227
24 Wang Q, Guo C Q, Shao Y S, et al. Development of environmently-friendly general primer with low surface treatment and its application [J]. Mod. Paint Finish., 2021, 24(7): 7
24 王 侨, 郭常青, 邵亚诗 等. 环保型低表面处理环氧通用底漆的研制及应用 [J]. 现代涂料与涂装, 2021, 24(7): 7
25 Yu X, Zhang G Q, Huang X J. Effect of cutback surface preparation on coating performance of steel pipeline [J]. Paint. Coat. Ind., 2018, 48(3): 73
25 于 萱, 张国庆, 黄秀娟. 钢质管道节点处表面处理对涂层性能的影响 [J]. 涂料工业, 2018, 48(3): 73
26 Zhang Z, Xiong J P, Cao J Y, et al. EIS study of organic coatings failure behavior under the different surface pretreatment levels [J]. New Technol. New Process, 2008, (10): 90
26 张 智, 熊金平, 曹京宜 等. 不同表面处理等级下有机涂层失效行为的EIS研究 [J]. 新技术新工艺, 2008, (10): 90
27 Chen Y, Xu L M, Chen Y F, et al. Influence of different surface treatments on coating properties of transmission tower [J]. Corros. Prot., 2014, 35: 823
27 陈 云, 徐利民, 陈懿夫 等. 不同表面处理对输电线路铁塔涂层性能的影响 [J]. 腐蚀与防护, 2014, 35: 823
28 Yue X G. Development and application of Polymastiff epoxy ethane high tolerance anticorrosive primer [J]. Yunnan Chem. Technol., 2020, 47(5): 98
28 岳兴国. 聚獒合环氧乙烷低表面处理防腐底漆的研发和应用 [J]. 云南化工, 2020, 47(5): 98
29 Chang D Y, Huang X F, Li Y D. Analysis of current situation and development direction of low surface-treatment coatings [J]. China Coat., 2016, 31(2): 7
29 常道阳, 黄晓峰, 李运德. 浅谈低表面处理涂料的现状及发展方向 [J]. 中国涂料, 2016, 31(2): 7
30 Han Z Z, Guo X J, Duan S M, et al. Preparation of epoxy coating with good tolerance to surface pretreatment [J]. Paint. Coat. Ind., 2016, 46(4): 61
30 韩忠智, 郭晓军, 段绍明 等. 低表面处理环氧涂料的研究 [J]. 涂料工业, 2016, 46(4): 61
31 Rahmani M H, Naderi R, Mahdavian M. Pulse-reverse electrodeposition of a conversion coating based on zinc cation and 3-nitrobenzoic acid on carbon steel to enhance adhesion and protective function of epoxy coating [J]. Prog. Org. Coat., 2022, 172: 107124
32 Sun P, Dong J, Huang H, et al. The effect of adhesion promoter on the performance of epoxy coatings on the surface of aluminum cathode plate [J]. Paint. Coat. Ind., 2021, 51(12): 14
32 孙 鹏, 董 劲, 黄 惠 等. 附着力促进剂对铝阴极板表面环氧涂层性能的影响 [J]. 涂料工业, 2021, 51(12): 14
33 Liu Y B, Zhang B, Wang Z T, et al. Study on the rapid evaluation of electrochemical impedance spectroscopy of offshore wind turbine [J]. Environ. Technol., 2017, 35(6): 6
33 刘扬波, 张 斌, 王钊桐 等. 海上风电塔筒涂层电化学阻抗谱快速评价技术研究 [J]. 环境技术, 2017, 35(6): 6
34 Huang Q A, Li W H, Tang Z P, et al. Fundamentals of electrochemical impedance spectroscopy [J]. Chin. J. Nat., 2020, 42: 12
doi: 10.3969/j.issn.0253-9608.2020.01.002
34 黄秋安, 李伟恒, 汤哲鹏 等. 电化学阻抗谱基础 [J]. 自然杂志, 2020, 42: 12
35 Scantlebury J D, Galić K. The application of AC impedance to study the performance of lacquered aluminium specimens in acetic acid solution [J]. Prog. Org. Coat, 1997, 31: 201
doi: 10.1016/S0300-9440(97)00005-2
36 Burduhos-Nergis D P, Vasilescu G D, Burduhos-Nergis D D, et al. Phosphate coatings: EIS and SEM applied to evaluate the corrosion behavior of steel in fire extinguishing solution [J]. Appl. Sci., 2021, 11: 7802
doi: 10.3390/app11177802
37 Zhang J Q, Cao C N. Study and evaluation on organic coatings by electrochemical impedance spectroscopy [J]. Corros. Prot., 1998, 19: 99
37 张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层 [J]. 腐蚀与防护, 1998, 19: 99
38 Zhang S H, Tan Y, Liang K X. In-situ impedance investigation of 304 stainless steel between pit growth and repassivation state [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 130
38 张胜寒, 檀 玉, 梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究 [J]. 中国腐蚀与防护学报, 2011, 31: 130
39 Yang H, Lu W Z, Li J, et al. Research progress in degradation process of anti-corrosion coatings in water containing environments [J]. Corros. Sci. Prot. Technol., 2012, 24: 452
39 杨 海, 陆卫中, 李 京 等. 水环境中防腐涂层失效机理研究进展 [J]. 腐蚀科学与防护技术, 2012, 24: 452
[1] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[2] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[3] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[4] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[5] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[6] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[8] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[9] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[12] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[13] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[14] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[15] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.