Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1071-1078     CSTR: 32134.14.1005.4537.2022.356      DOI: 10.11902/1005.4537.2022.356
  研究报告 本期目录 | 过刊浏览 |
Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响
罗维华, 王海涛(), 于林, 许实, 刘朝信, 郭宇, 王廷勇
青岛双瑞海洋环境工程股份有限公司 青岛 266101
Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy
LUO Weihua, WANG Haitao(), YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong
SunRui Marine Environment Engineering Company Ltd., Qingdao 266101, China
全文: PDF(9106 KB)   HTML
摘要: 

设计并制备了不同Zn含量的Al-Zn-0.03In-1.30Mg牺牲阳极材料,采用恒电流、动电位极化和电化学阻抗谱方法研究了Zn含量对Al-Zn-0.03In-1.30Mg阳极电化学性能的影响,采用金相显微镜、扫描电子显微镜 (SEM) 和能谱 (EDS) 分析Zn含量对阳极的显微组织与腐蚀形貌的影响。结果表明:随着Zn含量的升高,Al-Zn-0.03In-1.30Mg阳极晶粒更细化且金相组织更均匀,自腐蚀电位显著负移;添加0.60%~10.00% (质量分数) 的Zn可以有效破坏阳极表面的钝化膜从而改善阳极的溶解形貌,但Zn含量大于5.00%时,阳极会产生枝晶,增加局部腐蚀倾向使阳极溶解不均匀、电化学性能降低,0.60%~2.00%Zn含量阳极均具有较高的电化学性能,阳极的表面溶解均匀,电容量在2570 A·h·kg-1以上,工作电位≤-1.05 V (vs SCE);其中0.60%Zn含量阳极能够显著降低牺牲阳极材料中Zn对海洋环境的重金属污染,可作为环保型牺牲阳极材料使用。

关键词 铝合金牺牲阳极腐蚀电流效率EIS显微组织    
Abstract

Al-Zn-0.03In-1.30Mg sacrificial anode alloys with various Zn contents were designed and prepared. The effect of Zn content on the electrochemical properties of the Al-Zn-0.03In-1.30Mg anode alloys were investigated by AC impedance spectroscopy, galvanostatic- and potentiodynamic-polarization measurements. While the effect of Zn content on the microstructure and corrosion morphology of the alloys were analyzed by metallographic microscope, scanning electron microscope (SEM) and energy dispersive analysis (EDS). The results showed that with the increasing Zn content the grain size of Al-Zn-0.03In-1.30Mg alloys became finer with more uniform microstructure, whilst the free-corrosion current density shifted significantly in the negative direction. The addition of 0.60%-10.00% (mass fraction) Zn could effectively destroy the passive film on the alloy surface and improve the dissolution morphology of the anode alloy. But when the content of Zn excesses 5.00%, dendrites were generated, which would increase local corrosion tendency to make the alloy dissolve ununiformly with decreasing electrochemical properties. The anode alloys with 0.60%~2.00%Zn all exhibited high electrochemical performance, of which the surface dissolved uniformly with a capacity over 2570 A·h·kg-1, and the working potential lower than -1.05 V (vs SCE). The anode alloy with 0.60% Zn could significantly reduce the heavy metal Zn pollution to the marine environment. Therefore, it could be used as environment-friendly sacrificial anode material.

Key wordsaluminum alloy sacrificial anode    corrosion    current efficiency    EIS    microstructure
收稿日期: 2022-11-17      32134.14.1005.4537.2022.356
ZTFLH:  TG174.41  
通讯作者: 王海涛,E-mail: wanght@sunrui.net,研究方向为海洋工程装备腐蚀与防护   
Corresponding author: WANG Haitao, E-mail: wanght@sunrui.net   
作者简介: 罗维华,男,1995年生,硕士生

引用本文:

罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1071-1078.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.356      或      https://www.jcscp.org/CN/Y2023/V43/I5/1071

No.ZnInMgAl
1#-0.03191.1966Bal.
2#0.20800.02681.1488Bal.
3#0.61190.02901.2212Bal.
4#2.09370.03071.0904Bal.
5#5.14670.03101.1054Bal.
6#9.93470.03301.1804Bal.
表1  Al-Zn-0.03In-1.30Mg阳极成分 (mass fraction / %)
图1  实验装置电路图
Time / hCurrent density / mA·cm-2
0-241.5
24-480.4
48-724.0
72-961.5
表2  4d法电流密度
图2  不同Zn含量Al-Zn-0.03In-1.30Mg阳极金相组织
No.CompositionOCP/VClosed-circuit potential (96 h) / VCapacity / A·h·kg-1Current efficiency
1#Al-0.03In-1.30Mg-1.14-0.86266590%
2#Al-0.20Zn-0.03In-1.30Mg-1.11-1.09279594%
3#Al-0.60Zn-0.03In-1.30Mg-1.10-1.13257887%
4#Al-2.00Zn-0.03In-1.30Mg-1.10-1.12257388%
5#Al-5.00Zn-0.03In-1.30Mg-1.07-1.09247987%
6#Al-10.00Zn-0.03In-1.30Mg-1.09-1.06231084%
表3  Al-Zn-0.03In-1.30Mg阳极电化学性能实验结果
图3  Al-Zn-0.03In-1.30Mg阳极溶解形貌
图4  Al-Zn-0.03In-1.30Mg阳极表面EDS能谱
图5  Al-Zn-0.03In-1.30Mg阳极极化曲线
No.Compositionba / mV·dec-1Ecorr / VIcorr / A·cm-2
1#Al-0.03In-1.30Mg227-1.011.22×10-6
2#Al-0.20Zn-0.03In-1.30Mg156-1.071.18×10-6
3#Al-0.60Zn-0.03In-1.30Mg82-1.181.13×10-6
4#Al-2.00Zn-0.03In-1.30Mg57-1.215.36×10-7
5#Al-5.00Zn-0.03In-1.30Mg48-1.172.09×10-7
6#Al-10.00Zn-0.03In-1.30Mg47-1.203.45×10-7
表4  极化曲线拟合结果
图6  Al-Zn-0.03In-1.30Mg阳极的EIS图
No.Composition

Rs

Ω·cm2

CPE

Ω-1·cm2·s-1

n

0<n<1

Rt

Ω·cm2

L

H·cm2

R1

Ω·cm2

1#Al-0.03In-1.30Mg1.581.89×10-50.882.01×104//
2#Al-0.20Zn-0.03In-1.30Mg1.783.54×10-50.801.95×104//
3#Al-0.60Zn-0.03In-1.30Mg2.402.81×10-50.823.83×1031402758
4#Al-2.00Zn-0.03In-1.30Mg1.623.37×10-50.842.03×103847939
5#Al-5.00Zn-0.03In-1.30Mg1.742.56×10-50.843.60×1036631786
6#Al-10.00Zn-0.03In-1.30Mg1.693.42×10-50.821.91×10314931393
表5  电化学阻抗拟合值
1 Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials [J]. Corros. Sci. Prot. Technol., 2004, 16: 24
1 宋曰海, 郭忠诚, 樊爱民 等. 牺牲阳极材料的研究现状 [J]. 腐蚀科学与防护技术, 2004, 16: 24
2 Guo Z C, Song Y H, Geng W D. High performance Al-Zn-In series sacrificial anode materials [J]. Mater. Mech. Eng., 2005, 29(12): 38
2 郭忠诚, 宋曰海, 耿卫东. 铝-锌-铟系列高性能牺牲阳极材料的研究 [J]. 机械工程材料, 2005, 29(12): 38
3 Yang Z H, Liu B, Li X Y, et al. Application and progress of sacrificial anodes used in the cathodic protection of warships [J]. Mater. China, 2014, 33: 618
3 杨朝晖, 刘 斌, 李向阳 等. 牺牲阳极在舰船阴极保护中的应用和进展 [J]. 中国材料进展, 2014, 33: 618
4 Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
4 张万友, 王鑫焱, 郗丽娟 等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420
5 Lei B, Zhang H, Hu S N, et al. Development of sacrificial anode under deep sea environment [J]. Total Corros. Control, 2016, 30(12): 18
5 雷 冰, 张 华, 胡胜楠 等. 深海环境用牺牲阳极材料研究进展 [J]. 全面腐蚀控制, 2016, 30(12): 18
6 Zhang M D, Huang B J, Xiao M R, et al. Toxic effects of zinc on organisms and research prospects [J]. J. Green Sci. Technol., 2014, (12): 142
6 张梦蝶, 黄碧捷, 肖梦茹 等. 锌对生物体的毒性效应与研究展望 [J]. 绿色科技, 2014, (12): 142
7 Bao Y E, Ma J R. Variation in zinc contents of sea water and sediment in Dalian Bay [J]. Acta Sci. Circumst., 1990, 10: 371
7 鲍永恩, 马嘉蕊. 大连湾锌的集散特征及变化动态 [J]. 环境科学学报, 1990, 10: 371
8 Gao M, Wu X, Klerks P L, et al. Metal levels in seafood of the Huludao coast and associated health risks [J]. Chin. J. Ecol., 2016, 35: 205
8 高 蜜, 吴 星, Klerks P L 等. 葫芦岛海产品重金属含量及健康风险分析 [J]. 生态学杂志, 2016, 35: 205
9 Huang W. Toxicological effects of mercury, lead and zinc on the early developmental process of flounder (Paralichthys olivaceus) [D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2010: 60
9 黄 伟. 汞、铅、锌对褐牙鲆 (Paralichthys olivaceus) 早期发育过程毒理作用的研究 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2010: 60
10 Wang S S, Liang C H, Huang N B, et al. Research progress of aluminum based sacrificial anode [J]. Corros. Sci. Prot. Technol., 2011, 23: 369
10 王树森, 梁成浩, 黄乃宝 等. 铝基牺牲阳极研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 369
11 Kong X D, Zhu M W, Ding Z B, et al. Progress in aluminium alloy sacrificial anode [J]. Chin. J. Rare Met., 2003, 27: 376
11 孔小东, 朱梅五, 丁振斌 等. 铝合金牺牲阳极研究进展 [J]. 稀有金属, 2003, 27: 376
12 Hou D L, Song Y Q, Li D F, et al. Research and development on aluminum alloy anode materials [J]. Chin. J. Rare Met., 2009, 33: 96
12 侯德龙, 宋月清, 李德富 等. 铝基牺牲阳极材料的研究与开发 [J]. 稀有金属, 2009, 33: 96
13 Hao X J, Song S Z. EIS study of activation mechanism of zinc in aluminum zinc alloy [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 213
13 郝小军, 宋诗哲. 铝锌合金在3%NaCl溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2005, 25: 213
14 Lu L B, Tang Y G, Wang L W. Effect of zinc on aluminum-indium anode [J]. Chin. J. Power Sources, 2003, 27: 274
14 卢凌彬, 唐有根, 王来稳. 锌对铝铟阳极的影响 [J]. 电源技术, 2003, 27: 274
15 Li W L, Yan Y G, Chen G, et al. Effect of alloy elements on electrochemical performance of aluminum sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 127
15 李威力, 闫永贵, 陈 光 等. 合金元素对铝基牺牲阳极性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 127
16 Liu C R, Han L, Wang Q J, et al. Influence of magnesium contents on microstructure and electrochemistry behaviors of aluminum alloys for sacrificial anodes [J]. Light Alloy Fabricat. Technol., 2007, 35(4): 40
16 刘长瑞, 韩 莉, 王庆娟 等. 镁含量对铝阳极材料组织和电化学性能的影响 [J]. 轻合金加工技术, 2007, 35(4): 40
17 Wu T. The effect of Al/Mg intermetallic compounds on the electrochemical properties of aluminum-magnesium sacrificial anode materials [D]. Xi'an: Xi'an University of Architecture and Technology, 2010
17 吴 瞳. Al/Mg金属间化合物相对铝镁系牺牲阳极材料电化学性能的影响研究 [D]. 西安: 西安建筑科技大学, 2010
18 Zhang X Y, Wang Y X, Huo S Z. Study on electrochemical properties of Al-Zn-Mg-In-Ga-Ca alloy sacrificial anode [J]. Corros. Sci. Prot. Technol., 1995, 7: 53
18 张信义, 王元玺, 火时中. Al-Zn-Mg-In-Ga-Ca合金牺牲阳极电化学性能的研究 [J]. 腐蚀科学与防护技术, 1995, 7: 53
19 Wu Y H. A study of the effect of alloy elements on the activation of al-based sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 113
19 吴益华. 合金元素在铝基牺牲阳极活化过程中的作用 [J]. 中国腐蚀与防护学报, 1989, 9: 113
20 Zhang H B, Zhang Y H, Ma L, et al. Electrochemical performance of sacrificial anodes in alternating depth and shallowness of seawater environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 867
20 张海兵, 张一晗, 马 力 等. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 867
doi: 10.11902/1005.4537.2021.293
21 Zhao Y H, Liu K X, Hou H, et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study [J]. Mater. Des., 2022, 216: 110555
doi: 10.1016/j.matdes.2022.110555
22 Sato F, Newman R C. Mechanism of activation of aluminum by low-melting point elements: Part 2—Effect of zinc on activation of aluminum in pitting corrosion [J]. Corrosion, 1999, 55: 3
doi: 10.5006/1.3283964
23 Salinas D R, García S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: Case of Al-Zn [J]. J. Appl. Electrochem., 1999, 29: 1063
doi: 10.1023/A:1003684219989
24 Guo W, Wen J B, Ma J L, et al. Research progress of aluminium alloy sacrificial anode materials [J]. Corros. Prot., 2008, 29: 495
24 郭 炜, 文九巴, 马景灵 等. 铝合金牺牲阳极材料的研究现状 [J]. 腐蚀与防护, 2008, 29: 495
25 Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes [J]. Corrosion, 1984, 40: 366
doi: 10.5006/1.3593939
26 Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
26 徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
27 Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
doi: 10.1016/0013-4686(90)90077-D
28 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
28 孙海静, 覃 明, 李 琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
doi: 10.11902/1005.4537.2019.180
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[6] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[7] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[8] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[9] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[10] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[11] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[12] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[13] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[14] 李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.
[15] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.