|
|
Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响 |
罗维华, 王海涛( ), 于林, 许实, 刘朝信, 郭宇, 王廷勇 |
青岛双瑞海洋环境工程股份有限公司 青岛 266101 |
|
Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy |
LUO Weihua, WANG Haitao( ), YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong |
SunRui Marine Environment Engineering Company Ltd., Qingdao 266101, China |
引用本文:
罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
LUO Weihua,
WANG Haitao,
YU Lin,
XU Shi,
LIU Zhaoxin,
GUO Yu,
WANG Tingyong.
Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1071-1078.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.356
或
https://www.jcscp.org/CN/Y2023/V43/I5/1071
|
1 |
Song Y H, Guo Z C, Fan A M, et al. Current state of research on sacrificial anode materials [J]. Corros. Sci. Prot. Technol., 2004, 16: 24
|
1 |
宋曰海, 郭忠诚, 樊爱民 等. 牺牲阳极材料的研究现状 [J]. 腐蚀科学与防护技术, 2004, 16: 24
|
2 |
Guo Z C, Song Y H, Geng W D. High performance Al-Zn-In series sacrificial anode materials [J]. Mater. Mech. Eng., 2005, 29(12): 38
|
2 |
郭忠诚, 宋曰海, 耿卫东. 铝-锌-铟系列高性能牺牲阳极材料的研究 [J]. 机械工程材料, 2005, 29(12): 38
|
3 |
Yang Z H, Liu B, Li X Y, et al. Application and progress of sacrificial anodes used in the cathodic protection of warships [J]. Mater. China, 2014, 33: 618
|
3 |
杨朝晖, 刘 斌, 李向阳 等. 牺牲阳极在舰船阴极保护中的应用和进展 [J]. 中国材料进展, 2014, 33: 618
|
4 |
Zhang W Y, Wang X Y, Xi L J, et al. Research progress of sacrificial anode materials in cathodic protection technology [J]. Corros. Sci. Prot. Technol., 2013, 25: 420
|
4 |
张万友, 王鑫焱, 郗丽娟 等. 阴极保护技术中牺牲阳极材料的研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 420
|
5 |
Lei B, Zhang H, Hu S N, et al. Development of sacrificial anode under deep sea environment [J]. Total Corros. Control, 2016, 30(12): 18
|
5 |
雷 冰, 张 华, 胡胜楠 等. 深海环境用牺牲阳极材料研究进展 [J]. 全面腐蚀控制, 2016, 30(12): 18
|
6 |
Zhang M D, Huang B J, Xiao M R, et al. Toxic effects of zinc on organisms and research prospects [J]. J. Green Sci. Technol., 2014, (12): 142
|
6 |
张梦蝶, 黄碧捷, 肖梦茹 等. 锌对生物体的毒性效应与研究展望 [J]. 绿色科技, 2014, (12): 142
|
7 |
Bao Y E, Ma J R. Variation in zinc contents of sea water and sediment in Dalian Bay [J]. Acta Sci. Circumst., 1990, 10: 371
|
7 |
鲍永恩, 马嘉蕊. 大连湾锌的集散特征及变化动态 [J]. 环境科学学报, 1990, 10: 371
|
8 |
Gao M, Wu X, Klerks P L, et al. Metal levels in seafood of the Huludao coast and associated health risks [J]. Chin. J. Ecol., 2016, 35: 205
|
8 |
高 蜜, 吴 星, Klerks P L 等. 葫芦岛海产品重金属含量及健康风险分析 [J]. 生态学杂志, 2016, 35: 205
|
9 |
Huang W. Toxicological effects of mercury, lead and zinc on the early developmental process of flounder (Paralichthys olivaceus) [D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Oceanography), 2010: 60
|
9 |
黄 伟. 汞、铅、锌对褐牙鲆 (Paralichthys olivaceus) 早期发育过程毒理作用的研究 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2010: 60
|
10 |
Wang S S, Liang C H, Huang N B, et al. Research progress of aluminum based sacrificial anode [J]. Corros. Sci. Prot. Technol., 2011, 23: 369
|
10 |
王树森, 梁成浩, 黄乃宝 等. 铝基牺牲阳极研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 369
|
11 |
Kong X D, Zhu M W, Ding Z B, et al. Progress in aluminium alloy sacrificial anode [J]. Chin. J. Rare Met., 2003, 27: 376
|
11 |
孔小东, 朱梅五, 丁振斌 等. 铝合金牺牲阳极研究进展 [J]. 稀有金属, 2003, 27: 376
|
12 |
Hou D L, Song Y Q, Li D F, et al. Research and development on aluminum alloy anode materials [J]. Chin. J. Rare Met., 2009, 33: 96
|
12 |
侯德龙, 宋月清, 李德富 等. 铝基牺牲阳极材料的研究与开发 [J]. 稀有金属, 2009, 33: 96
|
13 |
Hao X J, Song S Z. EIS study of activation mechanism of zinc in aluminum zinc alloy [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 213
|
13 |
郝小军, 宋诗哲. 铝锌合金在3%NaCl溶液中的电化学行为 [J]. 中国腐蚀与防护学报, 2005, 25: 213
|
14 |
Lu L B, Tang Y G, Wang L W. Effect of zinc on aluminum-indium anode [J]. Chin. J. Power Sources, 2003, 27: 274
|
14 |
卢凌彬, 唐有根, 王来稳. 锌对铝铟阳极的影响 [J]. 电源技术, 2003, 27: 274
|
15 |
Li W L, Yan Y G, Chen G, et al. Effect of alloy elements on electrochemical performance of aluminum sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 127
|
15 |
李威力, 闫永贵, 陈 光 等. 合金元素对铝基牺牲阳极性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 127
|
16 |
Liu C R, Han L, Wang Q J, et al. Influence of magnesium contents on microstructure and electrochemistry behaviors of aluminum alloys for sacrificial anodes [J]. Light Alloy Fabricat. Technol., 2007, 35(4): 40
|
16 |
刘长瑞, 韩 莉, 王庆娟 等. 镁含量对铝阳极材料组织和电化学性能的影响 [J]. 轻合金加工技术, 2007, 35(4): 40
|
17 |
Wu T. The effect of Al/Mg intermetallic compounds on the electrochemical properties of aluminum-magnesium sacrificial anode materials [D]. Xi'an: Xi'an University of Architecture and Technology, 2010
|
17 |
吴 瞳. Al/Mg金属间化合物相对铝镁系牺牲阳极材料电化学性能的影响研究 [D]. 西安: 西安建筑科技大学, 2010
|
18 |
Zhang X Y, Wang Y X, Huo S Z. Study on electrochemical properties of Al-Zn-Mg-In-Ga-Ca alloy sacrificial anode [J]. Corros. Sci. Prot. Technol., 1995, 7: 53
|
18 |
张信义, 王元玺, 火时中. Al-Zn-Mg-In-Ga-Ca合金牺牲阳极电化学性能的研究 [J]. 腐蚀科学与防护技术, 1995, 7: 53
|
19 |
Wu Y H. A study of the effect of alloy elements on the activation of al-based sacrificial anode [J]. J. Chin. Soc. Corros. Prot., 1989, 9: 113
|
19 |
吴益华. 合金元素在铝基牺牲阳极活化过程中的作用 [J]. 中国腐蚀与防护学报, 1989, 9: 113
|
20 |
Zhang H B, Zhang Y H, Ma L, et al. Electrochemical performance of sacrificial anodes in alternating depth and shallowness of seawater environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 867
|
20 |
张海兵, 张一晗, 马 力 等. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 867
doi: 10.11902/1005.4537.2021.293
|
21 |
Zhao Y H, Liu K X, Hou H, et al. Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study [J]. Mater. Des., 2022, 216: 110555
doi: 10.1016/j.matdes.2022.110555
|
22 |
Sato F, Newman R C. Mechanism of activation of aluminum by low-melting point elements: Part 2—Effect of zinc on activation of aluminum in pitting corrosion [J]. Corrosion, 1999, 55: 3
doi: 10.5006/1.3283964
|
23 |
Salinas D R, García S G, Bessone J B. Influence of alloying elements and microstructure on aluminium sacrificial anode performance: Case of Al-Zn [J]. J. Appl. Electrochem., 1999, 29: 1063
doi: 10.1023/A:1003684219989
|
24 |
Guo W, Wen J B, Ma J L, et al. Research progress of aluminium alloy sacrificial anode materials [J]. Corros. Prot., 2008, 29: 495
|
24 |
郭 炜, 文九巴, 马景灵 等. 铝合金牺牲阳极材料的研究现状 [J]. 腐蚀与防护, 2008, 29: 495
|
25 |
Reboul M C, Gimenez P H, Rameau J J. A proposed activation mechanism for Al anodes [J]. Corrosion, 1984, 40: 366
doi: 10.5006/1.3593939
|
26 |
Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
|
26 |
徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
|
27 |
Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
doi: 10.1016/0013-4686(90)90077-D
|
28 |
Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
|
28 |
孙海静, 覃 明, 李 琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
doi: 10.11902/1005.4537.2019.180
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|