中国腐蚀与防护学报, 2023, 43(5): 1064-1070 DOI: 10.11902/1005.4537.2022.319

研究报告

流速对碳钢弯管段流动加速腐蚀速率的影响

潘代龙, 司晓东,, 吕金洪

江苏科技大学能源与动力学院 镇江 212100

Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow

PAN Dailong, SI Xiaodong,, LV Jinhong

School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China

通讯作者: 司晓东,E-mail:Xiaod_Si@163.com,研究方向为流动加速腐蚀

收稿日期: 2022-10-17   修回日期: 2022-11-23  

基金资助: 江苏省双创博士项目.  JSSCBS20210994

Corresponding authors: SI Xiaodong, E-mail:Xiaod_Si@163.com

Received: 2022-10-17   Revised: 2022-11-23  

Fund supported: Innovation and Entrepreneurship Program of Jiangsu Province.  JSSCBS20210994

作者简介 About authors

潘代龙,男,2001年生,本科生

摘要

利用自行设计的流动加速腐蚀实验台和阵列电极技术研究了120 ℃下不同流速对20#碳钢弯管段流动加速腐蚀速率分布的影响。并基于流体动力学模拟分析了流体动力学参数与腐蚀速率之间的关联。结果表明:不同的流速下,最大腐蚀电流密度位于弯管外弯侧。随着流速的增大,流动加速腐蚀速率显著提高。此外,通过实验与模拟结果对比表明,径向局部速度分量可作为预测碳钢弯管段流动加速腐蚀速率大小的重要参数。基于最小二乘法拟合获得了径向局部速度分量与腐蚀速率间的经验公式。本研究可应用于火电、核电和化工等工业碳钢弯管运输管路的设计优化、运行监测和检修维护策略的制定。

关键词: 弯管段 ; 流动加速腐蚀 ; 电化学 ; 数值模拟 ; 流体动力学

Abstract

Carbon steel is the main material for power plants, oil and gas pipelines. Flow accelerated corrosion is the main factor causing pipeline failure in power plants, especially the secondary circuit pipeline system of the pressurized water reactor (PWR) nuclear power plant. In this paper, a home-made flow accelerated corrosion test rig and array electrode technology was used to study the effect of different flow rates on the flow accelerated corrosion rate distribution of 20# carbon steel elbow at 120 °C. The correlation between hydrodynamic parameters and corrosion rate was analyzed based on hydrodynamic simulation. The results show that the maximum corrosion current density is located at the external bending side of the elbow at different flow rates. With the increase of flow velocity, the flow accelerated corrosion rate increased significantly. In addition, the comparison of experimental data and simulation results show that the radial local velocity component can be used as an important parameter to predict the flow accelerated corrosion rate of carbon steel elbow. The empirical formula between the radial local velocity component and the corrosion rate was obtained by fitting based on the least square method. This research can be applied to design optimization, operation monitoring and maintenance strategy formulation of carbon steel elbow transport lines in thermal power, nuclear power and chemical industries.

Keywords: elbow ; flow accelerated corrosion ; electrochemistry ; numerical simulation ; hydrodynamics

PDF (4590KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响. 中国腐蚀与防护学报[J], 2023, 43(5): 1064-1070 DOI:10.11902/1005.4537.2022.319

PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(5): 1064-1070 DOI:10.11902/1005.4537.2022.319

流动加速腐蚀 (FAC) 是碳钢或低合金钢表面的保护性氧化膜在单水流或湿蒸汽中的电化学腐蚀过程[1]。火电、核电和化工等工业不同管路系统由于FAC的影响,导致管壁变薄甚至破裂,造成严重的人身安全威胁和重大的经济损失。迄今为止,虽然国内外关于FAC预测模型已经有很多[2],但是这些模型大多只适用于某特定管路系统管壁减薄率的预测。然而,在实际工业管路中,大多数壁厚减薄都发生在奇形局部区域,尤其在局部湍流区最易致使碳钢管道失效[3,4]。因此,流体湍流参数对FAC的影响有待进一步的研究。

FAC为物理和化学相互耦合的结果,其主要受流体动力学因素、环境因素及材料因素的影响[5~7]。当流体流经奇形管道区域时,会产生局部湍流,造成流体流动形态剧烈变化,加剧流动加速腐蚀的影响[8]。环境因素主要包括流体温度、pH值及溶解氧量等[9~11]。研究表明,对于单相流,FAC速率在140 °C左右出现峰值[12];随着pH值和溶解氧浓度的增加,FAC速率会显著降低[13]。此外,高湍流局部区域显著影响腐蚀产物向主流区的传质速率,易造成各管路系统频繁失效。然而,管道中的湍流参数,如流速、湍动能、湍流强度等很难通过实验进行准确测量。且目前各商业预测软件因需要大量现场数据进行优化与修正而无法被广泛推广和应用,所以深入研究各个影响因素,尤其是湍流参数与FAC速率的关系至关重要。

本工作结合实验和数值模拟,基于自设计FAC实验台获得弯管段FAC速率分布,对比模拟弯管段的流体动力学参数特征,揭示了弯管段FAC速率与湍流参数的相关性。

1 实验方法

实验工作电极由20#碳钢制成,单个电极暴露面积为3.14 mm×3.14 mm。实验前,用不同粒度的碳化硅砂纸逐级打磨电极,然后在抛光机中抛光,再依次用去离子水和丙酮进行超声清洗,去除电极表面残留杂质。利用NaOH溶液和去离子水配制测试液,根据压水堆核电站 (PWR) 二回路水化学方法,溶液pH为9.3 (25 °C)。在配置好的溶液中鼓吹N2同时开启加热装置,去除溶液中溶解氧的影响。

图1为高温循环回路实验装置图。循环回路测试系统的管道直径为50 mm,实验段上游直管段为2000 mm,下游为900 mm。通过自动控制电加热系统使溶液温度维持在120 °C左右;利用离心泵变频系统设定管道内流速分别为1、2、3和4 m/s;实验过程中持续充入高纯N2,使高温水箱中压力维持在1.5 MPa。此外,在不同工况测试前,高温循环回路需运行10 h进行预浸泡操作[14],以确保实验结果的准确和有效性。

图1

图1   高温循环回路实验系统图

Fig.1   High temperature loop test system diagram


在Metrohm Autolab电化学工作站上,使用三电极系统进行电化学测量。如图2所示,弯管实验段共26个阵列电极,其中24个为工作电极,弯管肘部下侧为辅助电极;肘部上侧为参比电极,不同电极与管道间采用绝缘材料隔离。从弯管实验段出口至入口分别标记为B1~B7、A1~A5;两侧各分布6个测点,分别为C1~C6、D1~D6。其中,C3与C4之间为Ag/AgCl参比电极,D3与D4之间为辅助电极。电化学阻抗谱图频率范围为105~10-1 Hz,正弦电压激励信号幅值为10 mV。

图2

图2   实验段阵列电极安装及测点分布示意图

Fig.2   Schematic diagram of array electrode installation (a) and measuring point distribution (b) in test section


利用Fluent对90°弯管进行数值模拟,入口直管段长为2000 mm,出口直管长为900 mm,与实验管道尺寸一致。采用Realizable k-ε (RKE) 湍流模型求解Navier-Stokes方程,velocity-inlet为入口边界条件,弯管段入口流速分别为1、2、3和4 m/s;出口边界条件设定为pressure-outlet。

2 结果讨论与分析

图3为不同流速下典型位置阵列工作电极 (A1,A3,A5,B1,B4和B7) 的Nyquist图。不同流速下的阻抗谱均由高频区的电容性半圆和低频区的扩散容抗弧组成。电容性半圆归因于界面电荷转移反应,体现了工作电极样品在FAC过程中的溶解行为,电容性半圆形的直径大小代表电荷转移电阻的大小;扩散容抗弧偏离标准半圆现象归因于电极表面的“弥散效应”[15]。由图可知,不同流速下工作电极的Nyquist图在高频区容抗弧半径沿流动方向均先减小后增大。随着流速的增大,对应工作电极的容抗弧半径逐渐减小,表明电荷传递电阻也逐渐减小。此外,在不同流速下,最小容抗弧半径均位于B4电极处,即弯管实验段外弯最外侧位置。

图3

图3   不同流速条件下弯管段典型阵列电极Nyquist图

Fig.3   Nyquist plots of typical array electrodes in elbow section at 1 m/s (a), 2 m/s (b), 3 m/s (c) and 4 m/s (d)


通过等效电路[16]拟合上述EIS数据,如图4所示,该等效电路由溶液电阻Rs,氧化薄膜电容元件C,氧化薄膜层电阻Rp,电荷传递电阻Rct及常相位角元件QCPE组成,并由此获得不同流速下阵列工作电极的电荷传递电阻[17]。如图5a所示,沿流动方向,Rct先减小后增大,最小值分别位于A3(弯管最内侧)和B4 (弯管最外侧)。随着流速的增大,Rct均逐渐减小,说明流速对FAC速率影响较显著。此外,相同流速下外弯侧Rct最小值较内弯侧小,说明外弯侧为FAC事故易发区。

图4

图4   电化学阻抗谱的拟合等效电路图

Fig.4   Equivalent circuit used for EIS fitting


图5

图5   不同流速下弯管实验段阵列工作电极的电荷传递电阻和腐蚀电流密度

Fig.5   Charge transfer resistance (a) and corrosion current density (b) of array working electrode in elbow test section at different flow rates


根据Stern-Geary方程[15],得出对应位置处的腐蚀电流密度,如图5b所示。由图可知,随着流速的增加,腐蚀电流密度的分布形态无明显变化,沿流动方向肘部腐蚀电流密度明显高于其它位置。表1为不同流速下典型位置阵列工作电极的电荷转移电阻和腐蚀电流密度的具体数值。由表可知,在弯管实验段,外弯侧和内弯侧的腐蚀电流密度最大值分别位于B4 (对应于弯管最外侧) 与A3 (对应于弯管最内侧)。流速的增加能够显著增大弯管段阵列电极的腐蚀电流密度,这是因为金属基体和氧化物界面的可溶性含铁组分 (包括Fe2+、FeOH+、HFeO2-等) 的浓度在原有介质的流速下达到定常态[18],流速的增加导致湍流扩散系数变大,致使传质系数增大从而加快溶解产物的传质过程。此外,弯头管道特殊的几何形状增强了湍流的混合,也增强了传质过程[19]。溶解产物传质过程的加快,使金属基体表面和氧化膜表面溶解产物浓度降低,加速了腐蚀过程。因此,应重点关注弯管外弯侧因FAC导致管壁减薄而引发的事故问题。

表1   不同流速下典型位置阵列工作电极的电荷转移电阻和腐蚀电流密度

Table 1  Charge transfer resistance and corrosion current density at different flow rates of the typical position array working electrode

PositionRct / Ω·cm2Icorr / μA·cm-2
12341234
A114501375120082017.7218.6821.4131.33
A313901350116175018.4819.0322.1234.25
A515001400125092517.1218.3520.5527.77
B117001550122691015.1116.5720.9628.23
B41300115092273019.7622.3427.8735.19
B716001450124093016.0517.7220.7227.62

新窗口打开| 下载CSV


3 实验数据与数值模拟结果比较

由实验结果可知,当流速大于3 m/s时,阵列工作电极腐蚀电流密度明显增加,故选取入口速度为3 m/s实验段的流体动力学参数与腐蚀结果进行分析。图5a~d为腐蚀电流密度与各流体动力学参数对比。从图中可知,弯管段腐蚀电流密度与流速、剪切应力、湍动能以及轴向速率仅呈现局部相关,所以上述四个流体动力学参数不能作为反映弯管段流动加速腐蚀速率大小的“指示参数”。

图6

图6   各流体动力学参数与腐蚀电流密度比较

Fig.6   Comparison of velocity (a), wall shear (b), turbulence kinetic energy (c), axial local velocity (d) and corrosion current density


图7为径向局部速度分量 (Vr) 和腐蚀电流密度的关系,其中外弯侧负的Vr值表示流体的流动方向和正常方向相反。可以看出,径向局部速度分量和腐蚀电流密度的变化趋势呈正相关。这是因为当流体流经弯管段时发生了流体的分离,产生了一对旋转方向相反的迪恩涡[20],迪恩涡将沿半径方向的局部速度分量 (Vr) 指向壁面,加速了腐蚀产生的Fe2+等可溶性含铁组分的有效传质过程[21]。因此,径向局部速度分量Vr可作为预测碳钢弯管段FAC速率大小的重要参数。

图7

图7   径向局部速度与腐蚀电流密度的比较

Fig.7   Comparison of radial local velocity and corrosion current density between intrados (a) and extrados (b)


为进一步验证径向局部速度分量的有效性,我们将不同流速 (1、2、3和4 m/s) 下,弯管实验段不同测点的腐蚀电流密度和径向局部速度分量进行比较,如图8所示。由图可知,在不同流速下,实验段不同阵列工作电极腐蚀电流密度的变化趋势与径向局部速度分量变化趋势吻合良好,这证明了Vr与FAC速率具有明显的相关性。

图8

图8   不同流速下径向局部速度与腐蚀电流密度的比较

Fig.8   Comparison of radial local velocity and corrosion current density at 1 m/s (a), 2 m/s (b), 3 m/s (c) and 4 m/s (d)


4 径向局部速度分量与腐蚀电流密度的关系

为确定Vr和腐蚀电流密度的关系,逐点选取基于实验的腐蚀电流密度值和基于数值模拟结果的Vr值,并将计算为负值的Vr取其绝对值。图9给出了基于Vr与腐蚀电流密度同取对数的最小二乘法直线拟合,Vr与腐蚀电流密度的经验方程可表示为:

Icorr=22.71Vr0.038

图9

图9   弯管实验段不同流速的腐蚀电流密度和Vr的拟合关系

Fig.9   Fitting relationship between corrosion current density and Vr at different flow rates in elbow test section


由于本研究对给水系统的管道进行了分析,因此本经验方程 (1) 只适用于入口流速为1~4 m/s,常温下的pH为9.3,溶液中溶解氧在0.1 μg/kg以下的工况。

5 结论

通过对90°弯管进行流动加速腐蚀实验和数值模拟,研究了流速对弯管段FAC速率的影响。使用阵列电极技术对碳钢弯管段不同位置进行了电化学测量,实验结果表明,不同的流速下,内弯侧和外弯侧腐蚀电流密度均呈先增大后减小趋势,且弯管段的最大腐蚀电流密度位于弯管最外侧,与火力发电厂及核电站事故特征符合良好。随着流速的增加,弯管实验段工作电极电荷传递电阻减小,腐蚀电流密度增大,且当流速大于3 m/s时,FAC速率显著增加,这与流速加快溶解产物的有效传质过程有关。此外,通过数值模拟获得不同流速下流体动力学参数 (流速、剪切应力、湍动能、轴向速率及径向速率) 与腐蚀电流密度的相关性,发现沿着弯管径向局部速度分量与腐蚀电流密度变化趋势吻合较好,这与90°弯头二次流的演化密切相关。基于最小二乘拟合结果可以得出:Icorr=22.71Vr0.038。该结果可用于20#碳钢弯管段壁厚减薄原因的验证及管道设计的修改,有助于减少FAC事故的发生,提高电厂相关系统运行的安全性。

参考文献

Zhang G J.

Research on the mechanism of flow accelerated corrosion and its countermeasures of water-steam system in power station

[D]. Baoding: North China Electric Power University, 2014

[本文引用: 1]

张国军.

电站汽水系统流动加速腐蚀机理及对策研究

[D]. 保定: 华北电力大学, 2014

[本文引用: 1]

Lu X F, Zhu X L, Ling X.

A novel model for predicting flow accelerated corrosion rate in reducer

[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 431

[本文引用: 1]

陆晓峰, 朱晓磊, 凌 祥.

一种预测异径管流动加速腐蚀速率的新模型

[J]. 中国腐蚀与防护学报, 2011, 31: 431

[本文引用: 1]

通过将稳态传质模型和一维电偶腐蚀模型耦合,提出了预测异径管流动加速腐蚀速率的新模型。该模型先由稳态传质模型得到异径管近壁面处的自腐蚀电流密度分布和速度极值点处的自腐蚀电位,而后将极值点处自腐蚀电位代入到一维电偶腐蚀模型中,计算该壁面处的电偶腐蚀电流密度。应用此新模型对某一异径管流动加速腐蚀速率进行计算,发现异径管大端的腐蚀电流密度比小端腐蚀电流密度大两个数量级,据此可以解释台湾某核电站蒸汽冷凝水管线统计得出异径管大端出现最大减薄量的现象。与壁面剪切应力理论和稳态传质理论计算流动加速腐蚀速率分布相比,该模型的计算结果更贴近实际情况。

Jiang S, Chai F, Su H, et al.

Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution

[J]. Corros. Sci., 2017, 123: 217

DOI      URL     [本文引用: 1]

Yang X Y, Guan L, Li Y, et al.

Numerical simulation and experimental study on erosion-corrosion of square elbow based on orthogonal test

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 979

[本文引用: 1]

杨湘愚, 关 蕾, 李 雨 .

基于正交实验的90°弯管冲刷腐蚀数值模拟及实验研究

[J]. 中国腐蚀与防护学报, 2022, 42: 979

DOI      [本文引用: 1]

采用正交试验和数值模拟相结合的方法,研究了90°弯管在液固两相流条件下,管径 (A)、入口流速 (B)、液体流向 (C)、砂粒直径 (D) 和砂粒质量流量 (E) 5个因素对弯管冲刷腐蚀行为的影响程度大小。结果表明:不同因素对弯管冲刷腐蚀影响的顺序为B>A>E>C>D。当B为5 m/s、A为30 mm、E为0.03 kg/s、C液体流向为水平竖直向上、D为500 μm时,冲蚀速率达到最大,冲蚀速率较大的区域集中在弯管轴向角度60°到90°之间,径向角度180°附近,即位于弯管外侧靠近出口处,实验结果也验证了此种工况下弯管外侧出口处的腐蚀速率更高,同时最优因素水平试验结果也表明:降低入口流速和增大管径能大幅度降低冲蚀速率。

Kim S, Kim J W, Kim J H.

Enhancement of corrosion resistance in carbon steels using nickel-phosphorous/titanium dioxide nanocomposite coatings under high-temperature flowing water

[J]. J. Alloy. Compd., 2017, 698: 267

DOI      URL     [本文引用: 1]

Ge P L, Zeng W G, Xiao W W, et al.

Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment

[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271

葛鹏莉, 曾文广, 肖雯雯 .

H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响

[J]. 中国腐蚀与防护学报, 2021, 41: 271

DOI     

采用带有磁力驱动轴的高温高压腐蚀测试釜,通过失重法研究了施加应力与介质流动对20#钢和L245NS钢在H<sub>2</sub>S/CO<sub>2</sub>共存环境中腐蚀行为的影响。采用SEM和XRD表征手段分析了浸泡腐蚀后四点弯曲试样表面的微观形貌及腐蚀产物的组成。结果表明:在H<sub>2</sub>S/CO<sub>2</sub>共存环境中的各实验条件下,20#钢的平均腐蚀速率均高于L245NS钢的。当施加应力和液态介质流动时,两种材料的腐蚀速率均增大;应力对腐蚀速率的影响更显著。推测腐蚀机理为:H<sub>2</sub>S在腐蚀过程中起主导作用,生成了具有保护性的FeS腐蚀产物膜。应力会导致腐蚀产物膜存在大量微观通道,促进了腐蚀过程的进行;流体流动加速了金属溶解和腐蚀性物质的扩散,表现出最大的腐蚀速率。

Lin T, Zhou K Y, Si X D.

Research progress on flow-accelerated corrosion of power plant and contermeasures

[J]. Corros. Sci. Prot. Technol., 2018, 30: 543

[本文引用: 1]

林 彤, 周克毅, 司晓东.

电厂机组流动加速腐蚀研究进展及防护措施

[J]. 腐蚀科学与防护技术, 2018, 30: 543

[本文引用: 1]

Wang K, Nan C H, Lu J L.

Mechanism of hydrodynamic process in flow corrosion behavior

[J]. Chem. Ind. Eng. Prog., 2020, 39(suppl. 2) : 8

[本文引用: 1]

王 凯, 南翠红, 卢金玲.

流体动力学过程在流动腐蚀行为中的作用机制

[J]. 化工进展, 2020, 39(): 8

[本文引用: 1]

Pan D L, Si X D, Zhang J, et al.

Experimental study on flow-accelerated corrosion at elbow of carbon steel at different temperatures

[J]. Therm. Power Gener., 2022, 51(7): 110

[本文引用: 1]

潘代龙, 司晓东, 张 静 .

碳钢弯管段在不同温度下流动加速腐蚀性能实验研究

[J]. 热力发电, 2022, 51(7): 110

[本文引用: 1]

Dooley R B.

Flow-accelerated corrosion in fossil and combined cycle/HRSG plants

[J]. Power Plant Chem., 2008, 10: 68

Chen H L, Ma L, Huang G S, et al.

Effect of dissolved oxygen and flow rate of seawater on film formation of B30 Cu-Ni alloy

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 724

[本文引用: 1]

陈翰林, 马 力, 黄国胜 .

溶解氧和流速对B30铜镍合金在海水中成膜的影响

[J]. 中国腐蚀与防护学报, 2022, 42: 724

DOI      [本文引用: 1]

采用电化学以及表面观察的方法研究了海水的溶解氧和流速对于B30铜镍合金表面成膜的影响。结果表明,材料表面膜层的保护性随着海水中溶解氧浓度的提高而提高;在流速为0~2.0 m/s范围内,随着流速的增大,形成的膜层质量呈现先变好再变差的趋势;在流速为0.8 m/s左右时,形成的膜层最为致密完整。溶解氧通过影响其成膜的反应过程影响成膜质量;流速通过改变试样周围的溶解氧浓度以及产生一个冲刷作用来影响成膜,溶解氧浓度的提高有利于膜层的形成,海水的冲刷作用则会破坏形成的膜层。

Zhang G Y, Gu Y, Shao J.

Cause analysis on FAC failures of steam/water piping in secondary loop of PWR power plants and the countermeasures

[J]. J. Chin. Soc. Power Eng., 2012, 32: 170

[本文引用: 1]

张桂英, 顾 宇, 邵 杰.

核电站汽水管道流动加速腐蚀的影响因素分析及对策

[J]. 动力工程学报, 2012, 32: 170

[本文引用: 1]

Fujiwara K, Domae M, Yoneda K, et al.

Model of physico-chemical effect on flow accelerated corrosion in power plant

[J]. Corros. Sci., 2011, 53: 3526

DOI      URL     [本文引用: 1]

Talaat K, Hassan M M, Cakez C, et al.

Design of specimen holders for flow accelerated corrosion experiments in molten lead with numerical evaluation of pressure losses

[J]. Nucl. Eng. Des., 2021, 385: 111522

DOI      URL     [本文引用: 1]

Bandeira R M, van Drunen J, Garcia A C, et al.

Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy

[J]. Electrochim. Acta, 2017, 240: 215

DOI      URL     [本文引用: 2]

Liu H W, Gu T Y, Asif M, et al.

The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria

[J]. Corros. Sci., 2017, 114: 102

DOI      URL     [本文引用: 1]

Zeng L, Zhang G A, Guo X P.

Erosion–corrosion at different locations of X65 carbon steel elbow

[J]. Corros. Sci., 2014, 85: 318

DOI      URL     [本文引用: 1]

Si X D, Si H T, Li M Y, et al.

Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation

[J]. Mater. Corros., 2020, 71: 1637

[本文引用: 1]

Utanohara Y, Murase M.

Influence of flow velocity and temperature on flow accelerated corrosion rate at an elbow pipe

[J]. Nucl. Eng. Des., 2019, 342: 20

DOI      [本文引用: 1]

Flow accelerated corrosion (FAC) is one of the important issues that must be considered for aging fossil and nuclear power plants. To understand the effect of thermal flow field on FAC, FAC rates at an elbow pipe were measured under different flow velocity and temperature conditions. The elbow WA section was made of stainless steel (diameter D = 49.5 mm) and FAC rates were measured using corrosion sensors made of carbon steel. The dissolved oxygen concentration was kept under 0.1 mu g/kg, and pH was nearly neutral (about 7.0) at room temperature. The mean cross-sectional velocity was changed from 0.39 to 5.74 m/s (Reynolds number, about 1.0e6). When the water temperature was about 150 degrees C, the FAC rate was smaller at the intrados of the elbow pipe than at other circumferential locations. This tendency continued downstream. The FAC rates at the elbow pipe were larger than those upstream and downstream from the elbow pipe and the FAC rates downstream from the elbow pipe decreased along the flow direction. FAC rates increased as flow velocity increased and their relationship was not linear. The ratios of the maximum FAC rate at the elbow to the FAC rate in the upstream straight pipe ranged from about 1.7 to 2.9. When temperature decreased to 100 degrees C, FAC rate at the intrados became the largest of the other circumferential sensors. When temperature decreased further to 50 degrees C, FAC rate also decreased, but the value was not negligible. The influence of flow velocity was negligibly small at 50 degrees C and remarkable at 100 degrees C and 150 degrees C. The combination effect of flow velocity and temperature was different from place to place and particularly strong at the elbow.

Dean W R.

Fluid motion in a curved channel

[J]. Proc. Roy. Soc. Lond., 1928, 121A: 402

[本文引用: 1]

Si X D, Zhang R, Xu Q, et al.

Effects of local velocity components on flow-accelerated corrosion at 90° elbow

[J]. Mater. Res. Express, 2019, 6: 016557

[本文引用: 1]

/