Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 630-638     CSTR: 32134.14.1005.4537.2022.217      DOI: 10.11902/1005.4537.2022.217
  研究报告 本期目录 | 过刊浏览 |
SAF 2304双相不锈钢电化学性能及其近海腐蚀行为
黄家针1,2, 黄涛2, 杨丽景2(), 季灯平3, 丁贺3, 韦一1, 宋振纶2
1.浙江工业大学化学工程学院 杭州 310000
2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
3.浙江青山钢铁有限公司 丽水 323903
Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel
HUANG Jiazhen1,2, HUANG Tao2, YANG Lijing2(), JI Dengping3, DING He3, WEI Yi1, SONG Zhenlun2
1.College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310000, China
2.Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Zhejiang Qingshan Iron & Steel Co. Ltd., Lishui 323903, China
全文: PDF(20332 KB)   HTML
摘要: 

通过光学显微镜 (OM)、扫描电子显微镜 (SEM)、电化学实验,研究了双相不锈钢SAF 2304的电化学性能及实海腐蚀行为,并与碳钢做了对比。结果表明:碳钢的自腐蚀电位为-0.857 VSCE,维钝电流密度为87.30 μA‧cm-2,容抗弧半径较小,耐腐蚀性较差。SAF 2304在3.5%NaCl溶液的开路电位中长期稳定,自腐蚀电位为-0.369 VSCE,维钝电流密度为18.03 μA‧cm-2,容抗弧较大。实海暴露实验中,碳钢表面形成了疏松的腐蚀层,而SAF 2304表面在近海暴露前期形成了致密的金属氧化膜,并且随着暴露时间的增加,氧化膜表面附着了一层较为致密的钙镁沉积层和SiO2,与不锈钢结合紧密,具有一定保护作用,腐蚀形貌表现为均匀腐蚀,腐蚀速率远小于碳钢,耐蚀性好。

关键词 双相不锈钢电化学实海腐蚀行为    
Abstract

Electrochemical properties and real-sea corrosion behavior of duplex stainless steel SAF 2304 in a test site located in the Zhoushan area of the East China Sea, with a depth of about 10 m were assessed by mean of mass loss measurement, electrochemical tests, optical microscopy (OM) and scanning electron microscopy (SEM) and compared with carbon steel. The electrochemical test results show that the free corrosion potential of carbon steel is -0.857 VSCE, the passive current density is 87.30 μA‧cm-2, the capacitive arc radius is small, and the corrosion resistance is poor. SAF 2304 duplex stainless steel is stable for a long time in the open circuit potential of 3.5%NaCl solution, the free corrosion potential is -0.369 VSCE, the passive current density is 18.03 μA‧cm-2, the capacity of the arc resistance is large, and the corrosion resistance is good. In the real sea exposure experiment, the corrosion rate of SAF 2304 duplex stainless steel is much smaller than that of carbon steel. With the increase of exposure time, a relatively compact scale composed of Ca and Mg containing deposits and SiO2 may further form on the pre-formed metal oxide film, and all the corrosion products are tightly adhered to the substrate, therefore, provides protective effect to a certain extent for the steel, and the corrosion morphology is uniformly corroded.

Key wordsduplex stainless steel    electrochemistry    real sea    corrosion behavior
收稿日期: 2022-07-01      32134.14.1005.4537.2022.217
ZTFLH:  TG27  
基金资助:浙江省科技计划项目(2022C01192);浙江省科技计划项目(2021C01082)
通讯作者: 杨丽景,E-mail:yanglj@nimte.ac.cn,研究方向为金属腐蚀与防护
Corresponding author: YANG Lijing, E-mail: yanglj@nimte.ac.cn
作者简介: 黄家针,男,1995年生,硕士生

引用本文:

黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 630-638.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.217      或      https://www.jcscp.org/CN/Y2023/V43/I3/630

图1  SAF 2304双相不锈钢XRD图谱
图2  SAF 2304双相不锈钢横截面和纵截面金相的光学显微组织及表面SEM形貌
图3  SAF 2304双相不锈钢在3.5%NaCl溶液中的开路电位
图4  碳钢和SAF 2304双相不锈钢在3.5%NaCl溶液中动电位极化曲线及阻抗谱
图5  碳钢和SAF 2304双相不锈钢在近海浸泡不同时间后的失重和增重速率
图6  碳钢近海浸泡不同时间后的腐蚀形貌
图7  SAF 2304双相不锈钢近海浸泡不同时间后的腐蚀形貌
PositionCOFeSiNaClAlMgCaKISCrTi
A11.5165.272.534.400.400.211.452.7210.880.340.30---
B33.5249.172.846.260.19-2.871.252.890.77--0.130.11
C6.4866.7721.311.021.010.900.310.600.250.51
D46.0327.3414.463.96--2.350.45-1.08-4.33--
表1  图6对应位置的表面EDS元素成分分析
PositionCOFeSiNaAlMgCaKIClCrSnSb
A8.0364.731.5714.470.415.732.091.571.40----
B16.6459.630.604.82-1.901.5411.181.070.46-0.571.58
C32.5955.61--0.400.21-10.97-----
D-60.3719.076.66-4.193.412.690.77-2.080.76--
表2  图7对应位置的表面EDS元素成分分析
图8  碳钢和SAF 2304双相不锈钢在舟山近海中浸泡12个月后的横截面腐蚀形貌和EDS能谱图
图9  碳钢近海浸泡不同时间后去除腐蚀产物后的表面形貌
图10  SAF 2304双相不锈钢近海浸泡不同时间后去除腐蚀产物后的表面形貌
图11  碳钢和SAF 2304双相不锈钢浸泡12个月后的腐蚀产物粉末XRD谱
图12  碳钢和SAF 2304双相不锈钢浸泡12个月后的腐蚀产物粉末FTIR谱
1 Nilsson J O. Super duplex stainless steels [J]. Mater. Sci. Technol., 1992, 8: 685
doi: 10.1179/mst.1992.8.8.685
2 Patra S, Agrawal A, Mandal A, et al. Characteristics and manufacturability of duplex stainless steel: A review [J]. Trans. Indian Inst. Met., 2021, 74: 1089
doi: 10.1007/s12666-021-02278-7
3 Francis R, Byrne G. Duplex stainless steels—Alloys for the 21st century [J]. Metals, 2021, 11: 836
doi: 10.3390/met11050836
4 Burkert A, Lehmann J, Burkert A, et al. Technical and economical stainless steel alternatives for civil engineering applications [J]. Mater. Corros., 2014, 65: 1080
5 Burkert A, Müller T, Lehmann J, et al. Long-term corrosion behaviour of stainless steels in marine atmosphere [J]. Mater. Corros., 2018, 69: 20
6 Hussain E, Husain A. Erosion—corrosion of duplex stainless steel under Kuwait marine condition [J]. Desalination, 2005, 183: 227
doi: 10.1016/j.desal.2005.02.051
7 Aribo S, Barker R, Hu X M, et al. Erosion-corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution [J]. Wear, 2013, 302: 1602
doi: 10.1016/j.wear.2012.12.007
8 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
8 林朝晖, 明南希, 何 川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307
doi: 10.11902/1005.4537.2020.061
9 Chen J, Huang Y L, Hou B R. Research progress of corrosion protection of carbon steel in spray zone [J]. Corros. Sci. Prot. Technol., 2012, 24: 342
9 陈 君, 黄彦良, 侯保荣. 低碳钢在浪花飞溅区的腐蚀防护研究进展 [J]. 腐蚀科学与防护技术, 2012, 24: 342
10 Haugan E B, Næss M, Rodriguez C T, et al. Effect of Tungsten on the pitting and crevice corrosion resistance of type 25Cr super duplex stainless steels [J]. Corrosion, 2017, 73: 53
doi: 10.5006/2185
11 Lv S L, Yang Z M, Zhang B, et al. Corrosion and passive behaviour of duplex stainless steel 2205 at different cooling rates in a simulated marine-environment solution [J]. J. Iron Steel Res. Int., 2018, 25: 943
doi: 10.1007/s42243-018-0136-x
12 Zhu M, Zhang Q, Yuan Y F, et al. Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment [J]. J. Electroanal. Chem., 2020, 864: 114072
doi: 10.1016/j.jelechem.2020.114072
13 Zhu M, He F, Yuan Y F, et al. Effect of aging time on the microstructure and corrosion behavior of 2507 super duplex stainless steel in simulated marine environment [J]. J. Mater. Eng. Perform., 2021, 30: 5652
doi: 10.1007/s11665-021-05812-2
14 Tran T T T, Kannoorpatti K, Padovan A, et al. Effect of pH regulation by sulfate-reducing bacteria on corrosion behaviour of duplex stainless steel 2205 in acidic artificial seawater [J]. Roy. Soc. Open Sci., 2021, 8: 200639
15 Li P. Research on initial corrosion behavior of X60 pipeline steel in simulated tidal zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 338
15 李 平. X60管线钢在模拟潮差区初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 338
16 Hartt W H. 2012 Frank newman speller award: cathodic protection of offshore structures—history and current status [J]. Corrosion, 2012, 68: 1063
doi: 10.5006/0010-9312-68.12.1063
17 Min Z Q, Ou J C, Liang C W, et al. Research on the corrosion behavior of cast duplex stainless steel in seawater environment [J]. Foundry, 2015, 64: 785
17 闵正清, 欧家才, 梁承伟 等. 海水环境中铸造双相不锈钢的腐蚀行为研究 [J]. 铸造, 2015, 64: 785
18 Sun Y, Wu J J, Zhang D, et al. Investigation of microorganisms in corrosion product scales on Q235 carbon steel exposed to tidal-and full immersion zone at Qindao-and Sanya-sea waters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 333
18 孙 艳, 吴佳佳, 张 盾 等. 不同海域、不同腐蚀区带Q235碳钢实海挂片腐蚀产物层内微生物调查 [J]. 中国腐蚀与防护学报, 2018, 38: 333
19 Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
19 李子运, 王 贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463
doi: 10.11902/1005.4537.2019.203
20 Zhu J Y, Li D P, Chang W, et al. In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean [J]. J. Mater. Res. Technol., 2020, 9: 8104
doi: 10.1016/j.jmrt.2020.05.060
21 Zhu X R, Huang G Q, Lin L Y, et al. Long term corrosion characteristics of metallic materials in marine environments [J]. Corros. Eng., Sci. Technol., 2008, 43: 328
22 Sieurin H, Westin E M, Liljas M, et al. Fracture toughness of welded commercial lean duplex stainless steels [J]. Weld. World, 2009, 53: R24
doi: 10.1007/BF03266700
23 Calderon-Uriszar-Aldaca I, Briz E, Garcia H, et al. The weldability of duplex stainless-steel in structural components to withstand corrosive marine environments [J]. Metals, 2020, 10: 1475
doi: 10.3390/met10111475
24 Jing Q, Fang X, Ni J X, et al. Use of 2304 stainless steel reinforcement in Hong Kong-Zhuhai-Macau bridge—corrosion behaviors of 2304 stainless steel reinforcement [J]. J. Highw. Transp. Res. Dev., 2017, 34(10): 51
24 景 强, 方 翔, 倪静姁 等. 2304不锈钢钢筋在港珠澳大桥的应用—钢筋耐蚀性能研究 [J]. 公路交通科技, 2017, 34(10): 51
25 Peng W S, Liu S T, Guo W M, et al. Corrosion behavior and regularities of two stainless steels in seawater environment of different harbors [J]. Equip. Environ. Eng., 2020, 17(7): 76
25 彭文山, 刘少通, 郭为民 等. 两种不锈钢在港口海水环境中的腐蚀行为和规律研究 [J]. 装备环境工程, 2020, 17(7): 76
26 Sitarz M, Handke M, Mozgawa W. Identification of silicooxygen rings in SiO2 based on IR spectra [J]. Spectrochim. Acta, 2000, 56A: 1819
27 Chen D M, Chen X Y, Chen S D, et al. Rust evolution and electrochemical properties of field-exposed carbon steel in a tropical marine environment [J]. Int. J. Electrochem. Sci., 2018, 13: 7505
28 Wu Y J, Sha S L, Dong Y, et al. Study on characteristics of two-dimensional diffuse reflectance infrared spectrum of silicon dioxide [J]. Silicone Mater., 2019, 33: 479
28 武玉洁, 沙淑莉, 董 妍 等. 二氧化硅二维漫反射红外光谱特征研究 [J]. 有机硅材料, 2019, 33: 479
29 Liu Y W, Wang Z Y, Wei Y H. Influence of seawater on the carbon steel initial corrosion behavior [J]. Int. J. Electrochem. Sci., 2019, 14: 1147
30 Zhang B, Xiao X, Han Y J, et al. Study on third-step infrared spectroscopy of calcium carbonate [J]. Inorg. Chem. Ind., 2021, 53(1): 97
30 张 彬, 肖 霄, 韩芸娇 等. 碳酸钙三级红外光谱研究 [J]. 无机盐工业, 2021, 53(1): 97
31 Zhao H X, Hou X H. Deposit in bleached pulp production system and its infrared spectrum identification [J]. China Pulp Pap. Ind., 2022, 43(12): 20
31 赵华雄, 侯小红. 制浆系统中出现的沉积物及其红外图谱简析 [J]. 中华纸业, 2022, 43(12): 20
[1] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[2] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[5] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[6] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[7] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[8] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[9] 刘微. 测量不锈钢电化学噪声的非对称表面方法[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[11] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[12] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[13] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[14] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[15] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.