Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1145-1150     CSTR: 32134.14.1005.4537.2022.389      DOI: 10.11902/1005.4537.2022.389
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响
胡杰珍1, 上官桔钰1, 邓培昌2(), 冯绮蓝2, 王贵1, 王沛林1
1.广东海洋大学机械工程学院 湛江 524088
2.广东海洋大学化学与环境学院 湛江 524088
Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel
HU Jiezhen1, SHANGGUAN Juyu1, DENG Peichang2(), FENG Qilan2, WANG Gui1, WANG Peilin1
1.College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
2.College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
全文: PDF(4075 KB)   HTML
摘要: 

以Q235钢为研究材料,经实海挂样,藤壶附着后,利用阵列电极技术、线性极化、电化学阻抗谱及腐蚀形貌观察等相结合的方法,分析藤壶附着对碳钢腐蚀行为的影响,探讨藤壶附着下碳钢的腐蚀机理。结果表明,藤壶加剧碳钢时空二维的非均匀腐蚀:藤壶活体附着造成碳钢低腐蚀电位 (低25 mV)、低腐蚀电流 (低79%) 的“双低”腐蚀特征,抑制碳钢腐蚀;藤壶脱落后,残存底壳阻隔性快速下降,加速碳钢腐蚀;藤壶附着导致碳钢最大偶接电位差为25 mV,最大电偶电流达到41.6 μA·cm-2

关键词 污损生物Q235钢腐蚀阵列电极电化学阻抗谱    
Abstract

The effect of the adhesive barnacles, as a common fouling organism, on the corrosion behavior of Q235 steel was examined via immersion testing in natural seawater of depth 15 m at Zhanjiang Bay. After immersion in seawater for 15 and 30 d respectively, the tested steels were characterized by means of wire beam electrode, linear polarization, electrochemical impedance spectroscopy and surface corrosion morphology observation etc. The results show that after immersion for one month in seawater, barnacles are naturally attached on the steel surface. The barnacle adhesion on the carbon steel could intensify its non-uniform corrosion, in other word, the carbon steel suffered from non-uniform corrosion with lower corrosion potential by 25 mV and lower corrosion current density by 79%. After the barnacle falls off, the barrier effect of the remaining bottom shell will drop rapidly, and the corrosion rate of carbon steel will accelerate. In addition, due to the non-uniform corrosion of carbon steel caused by barnacle adhesion, the maximum potential difference of coupling is 25 mV, and the maximum galvanic current reaches 41.6 μA·cm-2.

Key wordsbiofouling    Q235 steel    corrosion    wire beam electrode    electrochemical impedance spectroscopy
收稿日期: 2022-12-07      32134.14.1005.4537.2022.389
ZTFLH:  TG172  
基金资助:广东省自然科学基金(2021A1515012129);湛江市科技发展专项(2022A01029)
通讯作者: 邓培昌,E-mail: dpc0520@163.com,研究方向为海洋工程及装备的腐蚀与防护   
Corresponding author: DENG Peichang, E-mail: dpc0520@163.com   
作者简介: 胡杰珍,女,1978年生,博士,副教授

引用本文:

胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1145-1150.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.389      或      https://www.jcscp.org/CN/Y2023/V43/I5/1145

图1  Q235钢电极浸泡不同周期的电偶电流和偶接电位分布图及其对应表面形貌图
图2  藤壶附着及周围区域的线性极化曲线
图3  电化学阻抗图以及阻抗等效电路模型
Sample

Rs

Ω·cm2

CPEdlRctΩ·cm2WCPEf

Rf

Ω·cm2

CPEdl-T

S·sec n ·cm2

CPEdl-P

R

Ω·cm2

T

S0.5

P

CPEf-T

S·sec n ·cm2

CPEf-P
Attached by barnacles4.4990.012800.7239719.8142.910.42610.43130.000770.2465226.91
Not attached by barnacles10.590.004830.5199415.2695.962.8550.3167---
Attached by part of balanite10.850.000720.654061.62934.992.7420.4151---
表1  等效电路拟合值
1 Duan J Z, Liu C, Liu H L, et al. Research progress of biofouling and its control technology in marine underwater facilities [J]. Mar. Sci., 2020, 44(8): 162
1 段继周, 刘 超, 刘会莲 等. 海洋水下设施生物污损及其控制技术研究进展 [J]. 海洋科学, 2020, 44(8): 162
2 Kamino K. Molecular design of barnacle cement in comparison with those of mussel and tubeworm [J]. J. Adhes., 2010, 86: 96
doi: 10.1080/00218460903418139
3 Blackwood D J, Lim C S, Teo S L M, et al. Macrofouling induced localized corrosion of stainless steel in Singapore seawater [J]. Corros. Sci., 2017, 129: 152
doi: 10.1016/j.corsci.2017.10.008
4 Eashwar M, Subramanian G, Chandrasekaran P, et al. Mechanism for Barnacle-induced crevice corrosion in stainless steel [J]. Corrosion, 1992, 48: NACE-92070608
5 Wang Z Q, Huang Y L, Wang X T, et al. Effects of oyster as macrofouling organism on corrosion mechanisms of a high-strength low-alloy steel [J]. Corros. Sci., 2022, 207: 110580
doi: 10.1016/j.corsci.2022.110580
6 Kong D, Wang Y, Zhang W, et al. Correlation between electrochemical impedance and current distribution of carbon steel under organic coating [J]. Mater. Corros., 2012, 63: 475
7 Ma S D, Liu H L, Liu J, et al. Ecology of harbor fouling organisms on spot detectation and quantification of fouling organisms of Seagull floating dock [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 913
7 马士德, 刘会莲, 刘 杰 等. 港湾污损生物生态研究—海鸥浮码头污损生物现场检测及其污损量化 [J]. 中国腐蚀与防护学报, 2022, 42: 913
doi: 10.11902/1005.4537.2021.299
8 Sun C X. Simulating effects of marine fouling organisms on corrosion of Zn sacrificial anodes [D]. Yantai: Yantai University, 2014
8 孙彩霞. 模拟污损生物附着对Zn阳极腐蚀性能影响的研究 [D]. 烟台: 烟台大学, 2014
9 Peng W S, Liu S T, Guo W M, et al. Corrosion behavior and regularities of two stainless steels in seawater environment of different harbors [J]. Equip. Environ. Eng., 2020, 17(7): 76
9 彭文山, 刘少通, 郭为民 等. 两种不锈钢在港口海水环境中的腐蚀行为和规律研究 [J]. 装备环境工程, 2020, 17(7): 76
10 Liu D Y, Wei K J, Li W J, et al. Influence of environmental factors in Yulin area of the South China Sea on localized corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 211
10 刘大扬, 魏开金, 李文军 等. 南海榆林海域环境因素对钢局部腐蚀的影响 [J]. 中国腐蚀与防护学报, 2003, 23: 211
11 de Brito L V R, Coutinho R, Cavalcanti E H S, et al. The influence of macrofouling on the corrosion behaviour of API 5L X65 carbon steel [J]. Biofouling, 2007, 23: 193
pmid: 17653930
12 Ma S D, Sun H Y, Huang G Q, et al. Effect of marine fouling creatures on corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 177
12 马士德, 孙虎元, 黄桂桥 等. 海洋污损生物对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2000, 20: 177
13 Yang H Y, Huang G Q, Wang J. Influence of oceanic biofouling on corrosion of carbon steel in seawater [J]. Corros. Prot., 2009, 30: 78
13 杨海洋, 黄桂桥, 王 佳. 生物污损对碳钢海水腐蚀的影响 [J]. 腐蚀与防护, 2009, 30: 78
14 Guo P, Yan M, Huang G Q, et al. A study on microbiologically influenced corrosion of a carbon steel in seawater [J]. Corros. Sci. Prot. Technol., 2006, 18: 410
14 郭 鹏, 颜 民, 黄桂桥 等. 海水中碳钢内锈层中的微生物及其对腐蚀的影响 [J]. 腐蚀科学与防护技术, 2006, 18: 410
15 Mao X, Cui X, Chen S P. Research progress of nanomaterials in the prevention of biological fouling on ships [J]. J. Phys.: Conf. Ser., 2021, 2002: 012013
16 Wang Q F, Song S Z. Progress in marine biologically influenced corrosion study [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 184
16 王庆飞, 宋诗哲. 金属材料海洋环境生物污损腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2002, 22: 184
17 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5% NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
17 王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
18 Wang T. Crevice corrosion behavior of Q345E steel in simulated seawater solution [D]. hohhot Inner Mongolia University of Science & Technology, 2014
18 王 婷. Q345E钢在模拟海水溶液中缝隙腐蚀行为研究 [D]. 呼和浩特: 内蒙古科技大学, 2014
19 Yu J H. The adhesion of marine organism and the influence on the surface and performance of cement-based materials [D]. Ji’nan: University of Jinan, 2017
19 于继海. 海洋生物附着及对水泥基材料表面及性能影响研究 [D]. 济南: 济南大学, 2017
20 Yoon Y, Mount A S, Hansen K M, et al. Electrolyte conductivity through the shell of the eastern oyster using a four-electrode measurement [J]. J. Electrochem. Soc., 2009, 156: P169
doi: 10.1149/1.3230623
21 Kamino K, Inoue K, Maruyama T, et al. Barnacle cement proteins: importance of disulfide bonds in their insolubility [J]. J. Biol. Chem., 2000, 275: 27360
doi: 10.1074/jbc.M910363199 pmid: 10840046
22 Khandeparker L, Anil A C. Underwater adhesion: the barnacle way [J]. Int. J. Adhes. Adhes., 2007, 27: 165
doi: 10.1016/j.ijadhadh.2006.03.004
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[2] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[3] 姚勇, 刘国军, 黎石竹, 刘淼然, 陈川, 黄廷城, 林海, 李展江, 刘雨薇, 王振尧. 金属材料腐蚀预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[4] 轩星雨, 屈少鹏, 赵行娅. CeO2@MWCNTs/EP复合涂层的制备与性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] 石践, 胡学文, 何博, 浦红, 郭锐, 汪飞. 经济型高耐候钢耐大气腐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1159-1164.
[6] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[7] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[8] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[9] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[10] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[11] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[12] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[13] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[14] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[15] 李忠诚, 陈圣刚, 郭全全, 郭俊营. 基于COMSOL的核电站安全壳钢衬里外侧腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1133-1139.