Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 663-670     CSTR: 32134.14.1005.4537.2022.142      DOI: 10.11902/1005.4537.2022.142
  研究报告 本期目录 | 过刊浏览 |
基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究
尚小标1,2(), 肖人友1, 李佳剑1, 张志浩1
1.昆明理工大学机电工程学院 昆明 650500
2.微波能工程应用及装备技术国家地方联合工程实验室 昆明 650500
Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory
SHANG Xiaobiao1,2(), XIAO Renyou1, LI Jiajian1, ZHANG Zhihao1
1.Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2.National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China
全文: PDF(3853 KB)   HTML
摘要: 

基于多物理场耦合理论,以铜电解槽阳电极板为研究对象,考虑应力应变与局部腐蚀反应的协同作用,研究阳极板底部圆角半径对阳极电流密度和腐蚀厚度均匀性的影响。结果表明,当阳极底部圆角半径从2 mm增大到12 mm后,阳极板上的电流密度突变率下降6.18%;阳极腐蚀厚度均匀性提高43.44%。当圆角半径为8 mm时,电流效率最高,达到99.18%。通过对电极板结构的优化,有效提高阳极腐蚀厚度均匀性和电流效率,为进一步优化电解槽结构、减小能耗以及提高电极腐蚀厚度均匀性的研究提供理论指导。

关键词 铜电解槽阳极腐蚀数值模拟电流效率    
Abstract

For improving the copper anode corrosion uniformity and the current efficiency of the copper electrolytic refining process, herewith, based on the multi-physical field coupling theory, the corrosion behavior of the copper positive plate of the copper electrolytic refining cell was studied in terms of the effect of the synergy of the stress and strain, and local corrosion reaction, as well as the bottom radius of the anode plate on the positive electrode corrosion current density distribution and the thinning uniformity of the anode plate. The results show that when the bottom fillet radius of the anode increases from 2 mm to 12 mm, the current density mutation rate on the anode plate decreases by 6.18%. The uniformity of anode thinning rate was improved by 43.44%. When the fillet radius is 8 mm, the current efficiency is the highest, reaching 99.18%. By optimizing the geometrical shape of electrode plate, the uniformity of thinning rate and current efficiency of the anode plate are effectively improved, which provides a theoretical guidance for further optimizing the structure of electrolytic cell for reducing energy consumption, as well as improving the thinning uniformity of electrode plate.

Key wordscopper electrolytic cell    anodic corrosion    numerical simulation    current efficiency
收稿日期: 2022-05-08      32134.14.1005.4537.2022.142
ZTFLH:  TF811  
基金资助:国家自然科学基金(51864030);云南省科技厅重点项目(202101AS070023)
通讯作者: 尚小标,E-mail:shang21st@163.com,研究方向为多物理场耦合理论及应用
Corresponding author: SHANG Xiaobiao, E-mail: shang21st@163.com
作者简介: 尚小标,男,1987年生,博士,讲师

引用本文:

尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 663-670.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.142      或      https://www.jcscp.org/CN/Y2023/V43/I3/663

图1  电解槽模型尺寸以及结构组成
图2  几何模型的网格元素质量分布和统计
Electrolyte physical parameter[19,20]Function expressionUnit
Density ρ1034.8+2.178[Cu]+0.531[H]-0.677Tkg/m3
Viscosity μ(1.39+0.00746[Cu]+0.0343[H])exp1792T×10-6Pa·s
Diffusion coefficient D(2.87-0.019[Cu]-0.0086[H]+1.67T)×10-10m2/s
Conductivity k0.134-0.00356[Cu]+0.00249[H]+0.00426Ts/cm
表1  电解液物性参数
图3  电解质电位分布
图4  不同圆角半径下的电极表面电流密度
图5  不同圆角半径下的电流密度变化曲线
图6  阳极电流密度极差
图7  不同圆角半径的阳极腐蚀厚度变化
图8  不同圆角半径下阳极左侧边腐蚀厚度变化
图9  不同圆角半径的阳极腐蚀厚度均匀性系数
图10  不同圆角半径的电流效率
1 Schlesinger M E, King M J, Sole K C, et al. Extractive Metallurgy of Copper [M]. 5th ed. Amsterdam: Elsevier, 2011
2 Zhang H B, Chen G T, Zhang X B, et al. Method and practice of improving current efficiency of copper electrowinning [J]. Nonferrous Met. Eng. Res., 2017, 38(5): 24
2 张海宝, 陈耿涛, 章小兵 等. 提高铜电积电流效率的方法与实践 [J]. 有色冶金设计与研究, 2017, 38(5): 24
3 Pan T Y. A brief talk on the current efficiency of copper electrolytic refining [J]. Popular Sci. Technol., 2014, 16(9): 191
3 潘泰屹. 浅谈铜电解精炼的电流效率 [J]. 大众科技, 2014, 16(9): 191
4 Jiang C X, Chen G M, He Y P, et al. Application of simulation in hydrometallurgical zinc and copper smelting [J]. Mater. Sci. Technol., 2021, 29(5): 70
4 蒋春翔, 陈国木, 何亚鹏 等. 模拟仿真在湿法炼锌和炼铜中的应用 [J]. 材料科学与工艺, 2021, 29(5): 70
5 Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
5 马荣耀, 赵 林, 王长罡 等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
6 Yu D Z, Zhang T, Niu W T. Simulation analysis of stress corrosion of H62 copper alloy [J]. J. Phys.: Conf. Ser., 2021, 1748: 062052
7 Zeng Q Y, Meng Y, Li C, et al. Temperature effect of interelectrode short-circuit of copper electrolytic cell [J]. Hydrometall China, 2020, 39: 429
7 曾箐雨, 蒙 毅, 李 纯 等. 铜电解槽的极间短路温度效应 [J]. 湿法冶金, 2020, 39: 429
8 Wang J M, Yang H D, Du M, et al. Corrosion of B10 Cu-Ni alloy in seawater polluted by high concentration of NH4 + [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 609
8 王家明, 杨昊东, 杜 敏 等. B10铜镍合金在高浓度NH4 +污染海水中腐蚀研究 [J]. 中国腐蚀与防护学报, 2021, 41: 609
doi: 10.11902/1005.4537.2020.222
9 Zhang Y F, Yuan X G, Huang H J, et al. Corrosion behavior of Cu-Al laminated board in neutral salt fog environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 241
9 张艺凡, 袁晓光, 黄宏军 等. 铜铝层状复合板中性盐雾腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 241
10 Wang Z H, Bai Y, Ma X, et al. Numerical simulation of galvanic corrosion for couple of Ti-alloy with Cu-alloy in seawaters [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 403
10 王振华, 白 杨, 马 晓 等. 钛合金和铜合金管路电偶腐蚀数值仿真 [J]. 中国腐蚀与防护学报, 2018, 38: 403
doi: 10.11902/1005.4537.2017.113
11 Doche O, Bauer F, Tardu S. Direct numerical simulation of an electrolyte deposition under a turbulent flow-A first approach [J]. J. Electroanal. Chem., 2012, 664: 1
doi: 10.1016/j.jelechem.2011.10.003
12 Pohjoranta A, Mendelson A, Tenno R. A copper electrolysis cell model including effects of the ohmic potential loss in the cell [J]. Electrochim. Acta, 2010, 55: 1001
doi: 10.1016/j.electacta.2009.09.073
13 Mandin P, Cense J M, Fabian C, et al. Electrodeposition process modeling using continuous and discrete scales [J]. Comput. Chem. Eng., 2007, 31: 980
doi: 10.1016/j.compchemeng.2006.10.018
14 Kim K R, Choi S Y, Paek S, et al. Electrochemical hydrodynamics modeling approach for a copper electrowinning cell [J]. Int. J. Electrochem. Sci., 2013, 8: 12333
15 Werner J M, Zeng W, Free M L, et al. Editors' choice—modeling and validation of local electrowinning electrode current density using two phase flow and nernst-planck equations [J]. J. Electrochem. Soc., 2018, 165: E190
doi: 10.1149/2.0581805jes
16 Adachi K, Nakai Y, Kitada A, et al. FEM simulation of nodulation in copper electro-refining [A]. KimH, WesstromB, AlamS, et al. Rare Metal Technology 2018 [M]. Cham: Springer, 2018: 215
17 Zhou X, Yang W D. Production practice of process modification of copper stripping cell in copper electrolysis system [J]. China Nonferrous Metall., 2017, 46(1): 30
17 周 旋, 杨文栋. 铜电解生产系统脱铜槽工艺改进的生产实践 [J]. 中国有色冶金, 2017, 46(1): 30
18 Lin B Q, Li H, Chen Z W, et al. Sensitivity analysis on the microwave heating of coal: a coupled electromagnetic and heat transfer model [J]. Appl. Therm. Eng., 2017, 126: 949
doi: 10.1016/j.applthermaleng.2017.08.012
19 Subbaiah T, Das S C. Physico-chemical properties of copper electrolytes [J]. Metall. Mater. Trans., 1989, 20B: 375
20 Price D C, Davenport W G. Densities, electrical conductivities and viscosities of CuSO4/H2SO4 solutions in the range of modern electrorefining and electrowinning electrolytes [J]. Metall. Trans., 1980, 11B: 159
21 Lazarev S I, Abonosimov O A, Protasov D N, et al. Mathematical model of electromembrane separation of copper-electroplating production solutions [J]. Theor. Found. Chem. Eng., 2020, 54: 208
doi: 10.1134/S0040579519060071
22 Cheddie D, Munroe N. Review and comparison of approaches to proton exchange membrane fuel cell modeling [J]. J. Power Sources, 2005, 147: 72
doi: 10.1016/j.jpowsour.2005.01.003
23 Liu C, Li G Q, Zhang L F, et al. A three-dimensional comprehensive numerical model of ion transport during electro-refining process for scrap-metal recycling [J]. Materials, 2022, 15: 2789
doi: 10.3390/ma15082789
24 Dai G Q, Zeng C, Bian F S, et al. Improvement of thickness uniformity of gold coatings electroplated on the leads of microwave printed circuits [J]. Electroplat. Finish., 2018, 37: 687
24 戴广乾, 曾 策, 边方胜 等. 微波印制电路引线镀金厚度均匀性的改善 [J]. 电镀与涂饰, 2018, 37: 687
25 Zhou N. Analysis and control of the electrode short circuit of traditional copper electrolysis [J]. Copper Eng., 2018, (2): 63
25 周 楠. 铜电解极间短路的分析与控制 [J]. 铜业工程, 2018, (2): 63
[1] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[2] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[3] 郭姿含, 张军, 李晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[4] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[5] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[6] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[7] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[8] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[9] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[10] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[11] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[12] 赵国强, 魏英华, 李京. Al-Zn-In牺牲阳极在不同工作电流密度下电流效率及溶解机制的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[13] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[14] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[15] 侯军才,梁国军,乔锦华,张秋美. 低Mn含量高电位镁合金牺牲阳极[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.