Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 525-534     CSTR: 32134.14.1005.4537.2022.231      DOI: 10.11902/1005.4537.2022.231
  研究报告 本期目录 | 过刊浏览 |
具有肋条结构的气力输送弯管抗冲蚀优化设计
郭姿含, 张军, 李晖()
集美大学海洋装备与机械工程学院 福建省能源清洁利用与开发重点实验室 厦门 361021
Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure
GUO Zihan, ZHANG Jun, LI Hui()
Fujian Province Key Laboratory of Energy Cleaning Utilization and Development, School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
全文: PDF(5935 KB)   HTML
摘要: 

弯管冲蚀是不可忽视的重要问题,直接关系到管路输送系统的安全运行及管道的使用寿命。针对这一问题,提出一种四边形、等腰梯形和等腰三角形3种横截面形状的肋条,分别安装在弯头外径方向不同位置,并考虑均匀安装多个肋条对冲蚀的影响。采用CFD-DPM方法对所提出的具有肋条结构的弯管抗冲蚀特性进行数值模拟。模拟结果表明:肋条安装在颗粒壁面第一次碰撞之前,一定程度上抑制冲蚀,且肋条背部形成低速逆流循环区,保护该区域壁面。3种不同横截面形状的肋条中,抗冲蚀作用最佳的为等腰三角形肋。肋深越大,保护范围越大,但影响颗粒碰撞角度,增大颗粒与其碰撞频率,并非深度越大抗冲蚀性能越佳。弯头部分均匀分布多个肋条也具有明显的抗冲蚀特性。其结论可为弯管的抗冲蚀优化设计提供新的设计方案。

关键词 气力输送弯管肋条截面形状冲蚀数值模拟    
Abstract

Elbow erosion is an important matter related directly to the safe operation of pipeline conveying system and the service life of pipeline. To relieve the harmful effect of this kind of erosion, ribs with different shapes such as quadrilateral, isosceles trapezoid and isosceles triangle sections were designed and prepared, which then were installed at different designed positions in the inner edge on the half side of the elbow with large curvature radius, and the effect of evenly installing multiple ribs on the erosion process was also considered. CFD-DPM method was used to simulate the erosion resistance of the elbow with rib structure. The results show that if the rib is installed just behind the leading edge of the particle impact on the elbow wall, the existence of rib can change the trajectory of the particles, inhibit the erosion to a certain extent, and induce the formation a low-speed counter current circulation zone on behind the rib to protect the elbow wall in this area. Among the three proposed ribs of different cross sections, the isosceles triangular ribs have the best anti-erosion effect. The greater the rib thickness is, the greater the protection range is. However, the rib thickness does affect the impact angle of particles and increase the collision frequency of particles, therefore, a proper rib thickness may be carefully selected for acquiring the better anti-erosion performance. The isosceles triangular ribs with a rib thick in 6 mm have the best anti-erosion effect at θ=25°, which is 43.63% higher than that of ordinary curved tubes. Many ribs evenly installed on the elbow also have obvious anti-erosion effect, in fact, installation of 8 ribs with isosceles triangular cross section have the best anti-erosion performance. The conclusion can provide a new reference for the anti-erosion optimization design of elbow.

Key wordspneumatic conveying    elbow    rib    section shape    erosion    numerical simulation
收稿日期: 2022-07-15      32134.14.1005.4537.2022.231
ZTFLH:  TH232  
基金资助:福建省自然科学基金(2022J01334);福建省自然科学基金(2020J01694)
通讯作者: 李晖,E-mail:lihui@jmu.edu.cn.,研究方向为多相流体流动
Corresponding author: LI Hui, E-mail: lihui@jmu.edu.cn
作者简介: 郭姿含,女,1997年生,硕士生

引用本文:

郭姿含, 张军, 李晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
GUO Zihan, ZHANG Jun, LI Hui. Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 525-534.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.231      或      https://www.jcscp.org/CN/Y2023/V43/I3/525

图1  颗粒受力示意图
图2  具有肋条的弯管几何结构
图3  网格划分
图4  网格独立性验证
图5  实验值[14]与模拟值对比图
图6  普通弯管冲蚀分布及对应颗粒轨迹
图7  不同形状肋条在弯头不同角度下的最大冲蚀率
图8  不同形状肋条在不同角度θ下的冲蚀率分布
图9  不同形状肋条在不同角度θ下的颗粒轨迹和速度矢量图
图10  颗粒在不同横截面形状下的碰撞示意图
图11  等腰梯形肋在不同位置最大冲蚀率随深度的变化
图12  等腰三角形肋在不同位置最大冲蚀率随深度的变化
图13  肋条在不同深度下的速度矢量图
图14  不同肋条数量下的最大冲蚀率
图15  不同数量下肋条的速度矢量图
1 Bayer R G. Fundamentals of wear failures [A]. BeckerW T, ShipleyR J, eds. Failure Analysis and Prevention [M]. Hitchin: American Technical, 2002: 901
2 Song X J, Qi D Z, Xu L J, et al. Numerical simulation prediction of erosion characteristics in a double-suction centrifugal pump [J]. Processes, 2021, 9: 1483
doi: 10.3390/pr9091483
3 Dehdarinejad E, Bayareh M. Impact of non-uniform surface roughness on the erosion rate and performance of a cyclone separator [J]. Chem. Eng. Sci., 2022, 249: 117351
doi: 10.1016/j.ces.2021.117351
4 Zhou J W, Liu Y, Liu S Y, et al. Effects of particle shape and swirling intensity on elbow erosion in dilute-phase pneumatic conveying [J]. Wear, 2017, 380-381: 66
doi: 10.1016/j.wear.2017.03.009
5 Alkassar Y, Agarwal V K, Pandey R K, et al. Influence of particle attrition on erosive wear of bends in dilute phase pneumatic conveying [J]. Wear, 2021, 476: 203594
doi: 10.1016/j.wear.2020.203594
6 dos Santos V F, de Souza F J, Duarte C A R. Reducing bend erosion with a twisted tape insert [J]. Powder Technol., 2016, 301: 889
doi: 10.1016/j.powtec.2016.07.020
7 Lin N, Lan H Q, Xu Y G, et al. Effect of the gas-solid two-phase flow velocity on elbow erosion [J]. J. Nat. Gas Sci. Eng., 2015, 26: 581
doi: 10.1016/j.jngse.2015.06.054
8 Duarte C A R, de Souza F J. Innovative pipe wall design to mitigate elbow erosion: A CFD analysis [J]. Wear, 2017, 380-381: 176
doi: 10.1016/j.wear.2017.03.015
9 San Y K, Thien R, Lee Chieng Chen V. Numerical study on erosion of a pipe bend with a vortex chamber [J]. Part. Sci. Technol., 2019, 37: 200
doi: 10.1080/02726351.2017.1360973
10 Li R, Sun Z Q, Li A J, et al. Design optimization of hemispherical protrusion for mitigating elbow erosion via CFD-DPM [J]. Powder Technol., 2022, 398: 117128
doi: 10.1016/j.powtec.2022.117128
11 Fan J R, Yao J, Cen K F. Antierosion in a 90° bend by particle impaction [J]. AIChE J., 2002, 48: 1401
doi: 10.1002/(ISSN)1547-5905
12 Yao J, Zhang B Z, Fan J R. An experimental investigation of a new method for protecting bends from erosion in gas-particle flows [J]. Wear, 2000, 240: 215
doi: 10.1016/S0043-1648(00)00359-8
13 Fan J R, Luo K, Zhang X Y, et al. Large eddy simulation of the anti-erosion characteristics of the ribbed-bend in gas-solid flows [J]. J. Eng. Gas Turbines Power., 2004, 126: 672
doi: 10.1115/1.1760523
14 Zhu H J, Li S. Numerical analysis of mitigating elbow erosion with a rib [J]. Powder Technol., 2018, 330: 445
doi: 10.1016/j.powtec.2018.02.046
15 Zamani M, Seddighi S, Nazif H R. Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow [J]. J. Nat. Gas Sci. Eng., 2017, 40: 91
doi: 10.1016/j.jngse.2017.01.034
16 Xu L Y, Wu F, Yan Y, et al. Numerical simulation of air-solid erosion in elbow with novel arc-shaped diversion erosion-inhibiting plate structure [J]. Powder Technol., 2021, 393: 670
doi: 10.1016/j.powtec.2021.08.022
17 Yang D L, Xing B S, Li J P, et al. Experiment and simulation analysis of the suspension behavior of large (5-30 mm) nonspherical particles in vertical pneumatic conveying [J]. Powder Technol., 2019, 354: 442
doi: 10.1016/j.powtec.2019.06.023
18 Peng W S, Cao X W. Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow [J]. J. Nat. Gas Sci. Eng., 2016, 30: 455
doi: 10.1016/j.jngse.2016.02.008
19 Zheng C, Liu Y H, Wang H X, et al. Numerical study on improving the erosion life of ball seat for oil and gas reservoir fracturing [J]. Eng. Fail. Anal., 2016, 60: 188
doi: 10.1016/j.engfailanal.2015.11.050
20 Zhang Y, Reuterfors E P, McLaury B S, et al. Comparison of computed and measured particle velocities and erosion in water and air flows [J]. Wear, 2007, 263: 330
doi: 10.1016/j.wear.2006.12.048
21 Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications [J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
doi: 10.1016/j.jngse.2014.10.001
22 Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. J. Aircr., 1975, 12: 471
doi: 10.2514/3.59826
23 Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Comput. Methods Appl. Mech. Eng., 1974, 3: 269
doi: 10.1016/0045-7825(74)90029-2
24 Pereira G C, de Souza F J, de Moro Martins D A. Numerical prediction of the erosion due to particles in elbows [J]. Powder Technol., 2014, 261: 105
doi: 10.1016/j.powtec.2014.04.033
[1] 张心怡, 李聪, 汪禹熙, 黄美, 朱卉平, 刘芳, 刘洋, 牛风雷. 铅基堆结构材料液态金属腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1216-1224.
[2] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[3] 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[4] 尚小标, 肖人友, 李佳剑, 张志浩. 基于多物理场耦合的铜电解槽阳极腐蚀均匀性研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[5] 杨湘愚, 关蕾, 李雨, 张永康, 王冠, 闫德俊. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[6] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[7] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[8] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[9] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[10] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[11] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[12] 彭文山,曹学文. 管道参数对液/固两相流弯管流场及冲蚀影响分析[J]. 中国腐蚀与防护学报, 2016, 36(1): 87-96.
[13] 彭文山,曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.
[14] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[15] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.