|
|
5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 |
邓成满1,2, 刘喆1,2, 夏大海1,2( ), 胡文彬1,2 |
1.天津市材料复合与功能化重点实验室 天津 300350 2.天津大学材料科学与工程学院 天津 300350 |
|
Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone |
DENG Chengman1,2, LIU Zhe1,2, XIA Da-Hai1,2( ), HU Wenbin1,2 |
1.Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China 2.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China |
引用本文:
邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
DENG Chengman,
LIU Zhe,
XIA Da-Hai,
HU Wenbin.
Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 683-692.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2023.140
或
https://www.jcscp.org/CN/Y2023/V43/I4/683
|
1 |
Huang Y C, Li Y, Xiao Z B, et al. Effect of homogenization on the corrosion behavior of 5083-H321 aluminum alloy [J]. J. Alloy. Compd., 2016, 673: 73
doi: 10.1016/j.jallcom.2016.02.228
|
2 |
Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
|
3 |
Jaume J, Marques M J F, Délia M L, et al. Surface modification of 5083 aluminum-magnesium induced by marine microorganisms [J]. Corros. Sci., 2022, 194: 109934
doi: 10.1016/j.corsci.2021.109934
|
4 |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
|
4 |
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
|
5 |
Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
|
5 |
李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
|
6 |
Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology [J]. Acta Armamentar., 2016, 37: 1291
|
6 |
黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术 [J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
|
7 |
Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
|
8 |
Li Z, Yi D Q, Tan C Y, et al. Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types [J]. J. Alloy. Compd., 2020, 817: 152690
doi: 10.1016/j.jallcom.2019.152690
|
9 |
Seong J, Frankel G S, Sridhar N. Inhibition of stress corrosion cracking of sensitized AA5083 [J]. Corrosion, 2016, 72: 284
|
10 |
Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
10 |
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
|
11 |
Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
doi: 10.1016/j.jmst.2021.11.004
|
12 |
Xia D H, Deng C M, Chen Z G, et al. Modeling localized corrosion propagation of metallic materials by peridynamics: progresses and challenges [J]. Acta Metall. Sin., 2022, 58: 1093
doi: 10.11900/0412.1961.2022.00249
|
12 |
夏大海, 邓成满, 陈子光 等. 金属材料局部腐蚀损伤过程的近场动力学模拟: 进展与挑战 [J]. 金属学报, 2022, 58: 1093
doi: 10.11900/0412.1961.2022.00249
|
13 |
Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
|
13 |
毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
|
14 |
Hou B R. Anti-corrosion technology to steel structure in splash zone [J]. Mater. China, 2014, 33: 26
|
14 |
侯保荣. 海洋钢结构浪花飞溅区腐蚀防护技术 [J]. 中国材料进展, 2014, 33: 26
|
15 |
Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
|
15 |
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
|
16 |
Peng C, Cao G W, Gu T Z, et al. The corrosion behavior of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. J. Mater. Res. Technol., 2022, 19: 709
doi: 10.1016/j.jmrt.2022.05.066
|
17 |
Yasakau K A, Zheludkevich M L, Ferreira M G S. Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection [A]. Mitra R. Intermetallic Matrix Composites [M]. Boca Raton: Woodhead Publishing, 2018: 425
|
18 |
Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-Alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
|
18 |
赵海洋, 高多龙, 张 童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
|
19 |
Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
|
20 |
Mao Y C, Zhu Y, Deng C M, et al. Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone [J]. Eng. Fail. Anal., 2022, 142: 106759
doi: 10.1016/j.engfailanal.2022.106759
|
21 |
Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
|
22 |
Huang G Q. Corrosion of aluminium alloys in marine environment (III)-A summary of 16 years exposure testing in splash zone [J]. Corros. Prot., 2003, 24: 47
|
22 |
黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结 [J]. 腐蚀与防护, 2003, 24: 47
|
23 |
Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
23 |
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
24 |
Xia D H, Ji Y Y, Zhang R F, et al. On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—Part 1: Corrosion initiation mechanism [J]. Corros. Sci., 2023, 213: 110985
doi: 10.1016/j.corsci.2023.110985
|
25 |
Ji Y Y, Mao Y C, Dang L H, et al. A high-resolution characterisation of localised corrosion of AA5083-H111 in simulated seawater by TEM [J]. Corros. Eng. Sci. Technol., 2023, 58: 223
doi: 10.1080/1478422X.2022.2162662
|
26 |
Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface [J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
|
27 |
Qin J, Li Z, Ma M Y, et al. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 765
doi: 10.1016/S1003-6326(22)65831-X
|
28 |
Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochim. Acta, 2007, 52: 7651
doi: 10.1016/j.electacta.2006.12.072
|
29 |
Yi G S, Sun B H, Poplawsky J D, et al. Investigation of pre-existing particles in Al 5083 alloys [J]. J. Alloy. Compd., 2018, 740: 461
doi: 10.1016/j.jallcom.2017.12.329
|
30 |
Tan L, Allen T R. Effect of thermomechanical treatment on the corrosion of AA5083 [J]. Corros. Sci., 2010, 52: 548
doi: 10.1016/j.corsci.2009.10.013
|
31 |
Li N, Dong C F, Man C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy [J]. Corros. Sci., 2021, 180: 109174
doi: 10.1016/j.corsci.2020.109174
|
32 |
Wang B, Zhang L W, Su Y, et al. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J]. Mater. Des., 2013, 50: 15
doi: 10.1016/j.matdes.2013.02.080
|
33 |
Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions [J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
|
34 |
Xia D H, Pan C C, Qin Z B, et al. Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection [J]. Prog. Org. Coat., 2020, 143: 105638
|
35 |
Deng C M, Zhu Y, Sun S K, et al. Analysis of failure causes of epoxy-phenolic coated tinplate after boiling sterilization [J]. Eng. Fail. Anal., 2022, 135: 106129
doi: 10.1016/j.engfailanal.2022.106129
|
36 |
Paszternák A, Felhősi I, Pászti Z, et al. Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers [J]. Electrochim. Acta, 2010, 55: 804
doi: 10.1016/j.electacta.2009.09.023
|
37 |
Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
doi: 10.1016/j.corsci.2011.12.039
|
38 |
Peng C, Cao G W, Gu T Z, et al. The effect of dry/wet ratios on the corrosion process of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. Corros. Sci., 2023, 210: 110840
doi: 10.1016/j.corsci.2022.110840
|
39 |
Wan Y, Li L J, Jin Y N, et al. Pitting corrosion behavior and mechanism of 5083 aluminum alloy based on dry-wet cycle exposure [J]. Mater. Corros., 2023, 74: 608
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|