Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 683-692     CSTR: 32134.14.1005.4537.2023.140      DOI: 10.11902/1005.4537.2023.140
  中国腐蚀与防护学会杰出青年成就奖论文专栏 本期目录 | 过刊浏览 |
5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制
邓成满1,2, 刘喆1,2, 夏大海1,2(), 胡文彬1,2
1.天津市材料复合与功能化重点实验室 天津 300350
2.天津大学材料科学与工程学院 天津 300350
Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone
DENG Chengman1,2, LIU Zhe1,2, XIA Da-Hai1,2(), HU Wenbin1,2
1.Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300350, China
2.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
全文: PDF(11386 KB)   HTML
摘要: 

采用开路电位 (OCP)、电化学阻抗谱 (EIS),并结合扫描电子显微镜 (SEM) 和X射线光电子能谱 (XPS) 技术,研究了5083-H111铝合金在模拟动态海水环境中的电化学行为,并探讨了局部腐蚀机制。5083-H111铝合金的金属间化合物以Al-Fe和Mg-Si相为主,点蚀主要分布于金属间化合物周围;Al-Fe相在腐蚀过程中充当阴极,与周围Al基体构成微腐蚀电池,促使Al基体的点蚀。Mg-Si相在腐蚀过程中最初充当阳极,当其发生选择性溶解导致脱合金化逐渐形成富Si相后,变为阴极,促使Al基体发生点蚀。5083-H111铝合金表面生成的腐蚀产物为Al(OH)3、Al2O3和AlCl3。腐蚀产物在腐蚀初期对Al基体起到良好的保护作用,导致OCP正移,极化电阻 (Rp) 增大;腐蚀后期 (36~56 d),初始腐蚀产物会发生局部脱落,在脱落位置Al基体再次发生局部腐蚀,导致OCP负移,Rp急剧减小。随着暴露时间的延长,部分金属间化合物在腐蚀后期会发生脱落,形成腐蚀空腔。

关键词 5083-H111铝合金动态海水环境局部腐蚀金属间化合物电化学阻抗谱    
Abstract

The localized corrosion of 5083-H111 Al alloy in a simulated dynamic seawater zone was investigated by open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results revealed that, in the simulated dynamic seawater, 5083-H111 Al alloy generated visible pitting corrosion caused by the intermetallic particles (IMPs). These IMPs were composed of Al-Fe phase and Mg-Si phase, Al-Fe phase acted as a cathode during the corrosion, forming a micro-corrosion cell with the surrounding Al matrix, accelerating the corrosion of the Al matrix. Mg-Si phase was firstly acted as anode, the selective dissolution of Mg in the Mg-Si particles results in a de-alloyed outer layer on the exposed surfaces and forms Si-containing phase, then the Si-containing phase acted as cathode, prompting pitting corrosion of Al matrix. The corrosion products generated on the surface of 5083-H111 Al alloy were Al(OH)3, Al2O3·6H2O and AlCl3. These corrosion products provided a good protection to the Al matrix in the early stage of corrosion (1-36 d), resulting in a positive shift in OCP and an increase in the polarization resistance Rp. However, in the later stage of corrosion (36-56 d), the initial corrosion products were partially detached, leading to localized corrosion again at the detachment position, resulting in a negative shift of OCP and a sharp decrease in Rp. Finally, with the prolongation of exposed time, some IMPs detached from the corrosion pits, forming corrosion cavities.

Key words5083-H111 Al alloy    dynamic seawater zone    localized corrosion    intermetallic particles    electrochemical impedance spectroscopy
收稿日期: 2023-05-06      32134.14.1005.4537.2023.140
ZTFLH:  O646  
基金资助:国家自然科学基金(52171077)
通讯作者: 夏大海,E-mail: dahaixia@tju.edu.cn,研究方向为腐蚀电化学   
Corresponding author: XIA Da-Hai, E-mail: dahaixia@tju.edu.cn   
作者简介: 邓成满,男,1998年生,硕士生
夏大海,1984 年出生,2012 年毕业于天津大学,获博士学位。现就职于天津大学,副教授、硕士研究生导师。 主要研究方向为腐蚀电化学。承担国家自然科学基金面上项目和青年项目、“十三五”装备预研国防科技 重点实验室基金等多项课题。现任中国腐蚀与防护学会第十一届理事、中国腐蚀与防护学会青年工作委 员会委员、中国腐蚀与防护学会腐蚀电化学及测试方法委员会委员。已在Electrochim. Acta、J. Electrochem. Soc.、Corros. Sci. 等国内外学术刊物上发表SCI 论文150 余篇,H因子30。荣获天津市科技进步二等 奖、2020-2021 年度天津市工程专业学位硕士研究生优秀论文指导教师、天津大学沈志康奖教金。目前担 任Anti-Corrosion Methods and Materials 期刊副主编、Corrosion Communications 期刊Associate editor、《中国 腐蚀与防护学报》编委、《中国有色金属学报》中、英文版和《装备环境工程》等期刊的青年编委。2023 年获得中国腐蚀与防护学 会杰出青年学术成就奖。

引用本文:

邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 683-692.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.140      或      https://www.jcscp.org/CN/Y2023/V43/I4/683

图1  5083-H111铝合金暴露在模拟动态海水环境36和56 d的微观腐蚀形貌
图2  5083-H111铝合金暴露在模拟动态海水环境56 d后由金属间化合物引起的点蚀
图3  5083-H111铝合金暴露在动态海水环境56 d后金属间化合物的微观形貌及元素分布
图4  5083-H111铝合金在动态海水环境暴露56 d后去除腐蚀产物的微观形貌
图5  5083-H111铝合金在动态海水环境中暴露56 d后金属间化合物的脱落
图6  5083-H111铝合金在动态海水环境中暴露56 d生成的腐蚀产物膜
图7  5083-H111铝合金暴露在动态海水环境56 d生成的腐蚀产物的微观结构
图8  5083-H111铝合金在模拟动态海水环境中暴露56 d后表面生成的腐蚀产物的XPS结果
图9  5083-H111铝合金在模拟动态海水环境中的OCP
图10  5083-H111铝合金在模拟动态海水环境的EIS
图11  拟合EIS数据的等效电路图
Time dCPEfRf103 Ω⸱cm2CPEdlRct104 Ω⸱cm2Rp104 Ω⸱cm2∑χ2
Qf / 10-6 Ω-1⸱cm-2⸱snfnfQdl / 10-6 Ω-1⸱cm-2⸱sndlndl
12.0610.8651.2834.4360.8977.3467.4742.705×10-2
1611.420.8940.72110.7310.9199.3989.4712.029×10-3
362.4360.9331.11610.6720.8559.6059.7172.866×10-2
561.9810.9870.4139.5700.8406.2166.2574.264×10-2
表1  基于电化学等效电路的EIS拟合参数
图12  5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制示意图
1 Huang Y C, Li Y, Xiao Z B, et al. Effect of homogenization on the corrosion behavior of 5083-H321 aluminum alloy [J]. J. Alloy. Compd., 2016, 673: 73
doi: 10.1016/j.jallcom.2016.02.228
2 Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
doi: 10.1016/j.actamat.2003.08.023
3 Jaume J, Marques M J F, Délia M L, et al. Surface modification of 5083 aluminum-magnesium induced by marine microorganisms [J]. Corros. Sci., 2022, 194: 109934
doi: 10.1016/j.corsci.2021.109934
4 Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
4 邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
5 Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
5 李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
6 Huang Y B, Zhou K K, Ba G Z, et al. The corrosion status of amphibious vehicles along the coast and integrated corrosion control technology [J]. Acta Armamentar., 2016, 37: 1291
6 黄燕滨, 周科可, 巴国召 等. 沿海两栖车辆腐蚀现状及腐蚀综合控制技术 [J]. 兵工学报, 2016, 37: 1291
doi: 10.3969/j.issn.1000-1093.2016.07.018
7 Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
8 Li Z, Yi D Q, Tan C Y, et al. Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types [J]. J. Alloy. Compd., 2020, 817: 152690
doi: 10.1016/j.jallcom.2019.152690
9 Seong J, Frankel G S, Sridhar N. Inhibition of stress corrosion cracking of sensitized AA5083 [J]. Corrosion, 2016, 72: 284
10 Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
10 段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
11 Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: A critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
doi: 10.1016/j.jmst.2021.11.004
12 Xia D H, Deng C M, Chen Z G, et al. Modeling localized corrosion propagation of metallic materials by peridynamics: progresses and challenges [J]. Acta Metall. Sin., 2022, 58: 1093
doi: 10.11900/0412.1961.2022.00249
12 夏大海, 邓成满, 陈子光 等. 金属材料局部腐蚀损伤过程的近场动力学模拟: 进展与挑战 [J]. 金属学报, 2022, 58: 1093
doi: 10.11900/0412.1961.2022.00249
13 Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
13 毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47
doi: 10.11902/1005.4537.2022.162
14 Hou B R. Anti-corrosion technology to steel structure in splash zone [J]. Mater. China, 2014, 33: 26
14 侯保荣. 海洋钢结构浪花飞溅区腐蚀防护技术 [J]. 中国材料进展, 2014, 33: 26
15 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
15 李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
16 Peng C, Cao G W, Gu T Z, et al. The corrosion behavior of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. J. Mater. Res. Technol., 2022, 19: 709
doi: 10.1016/j.jmrt.2022.05.066
17 Yasakau K A, Zheludkevich M L, Ferreira M G S. Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection [A]. Mitra R. Intermetallic Matrix Composites [M]. Boca Raton: Woodhead Publishing, 2018: 425
18 Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-Alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
18 赵海洋, 高多龙, 张 童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
19 Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
20 Mao Y C, Zhu Y, Deng C M, et al. Analysis of localized corrosion mechanism of 2024 aluminum alloy at a simulated marine splash zone [J]. Eng. Fail. Anal., 2022, 142: 106759
doi: 10.1016/j.engfailanal.2022.106759
21 Liang M X, Melchers R, Chaves I. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones [J]. Corros. Sci., 2018, 140: 286
doi: 10.1016/j.corsci.2018.05.036
22 Huang G Q. Corrosion of aluminium alloys in marine environment (III)-A summary of 16 years exposure testing in splash zone [J]. Corros. Prot., 2003, 24: 47
22 黄桂桥. 铝合金在海洋环境中的腐蚀研究(III)—海水飞溅区16年暴露试验总结 [J]. 腐蚀与防护, 2003, 24: 47
23 Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
23 夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
24 Xia D H, Ji Y Y, Zhang R F, et al. On the localized corrosion of AA5083 in a simulated dynamic seawater/air interface—Part 1: Corrosion initiation mechanism [J]. Corros. Sci., 2023, 213: 110985
doi: 10.1016/j.corsci.2023.110985
25 Ji Y Y, Mao Y C, Dang L H, et al. A high-resolution characterisation of localised corrosion of AA5083-H111 in simulated seawater by TEM [J]. Corros. Eng. Sci. Technol., 2023, 58: 223
doi: 10.1080/1478422X.2022.2162662
26 Xia D H, Mao Y C, Zhu Y, et al. A novel approach used to study the corrosion susceptibility of metallic materials at a dynamic seawater/air interface [J]. Corros. Commun., 2022, 6: 62
doi: 10.1016/j.corcom.2022.03.001
27 Qin J, Li Z, Ma M Y, et al. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 765
doi: 10.1016/S1003-6326(22)65831-X
28 Yasakau K A, Zheludkevich M L, Lamaka S V, et al. Role of intermetallic phases in localized corrosion of AA5083 [J]. Electrochim. Acta, 2007, 52: 7651
doi: 10.1016/j.electacta.2006.12.072
29 Yi G S, Sun B H, Poplawsky J D, et al. Investigation of pre-existing particles in Al 5083 alloys [J]. J. Alloy. Compd., 2018, 740: 461
doi: 10.1016/j.jallcom.2017.12.329
30 Tan L, Allen T R. Effect of thermomechanical treatment on the corrosion of AA5083 [J]. Corros. Sci., 2010, 52: 548
doi: 10.1016/j.corsci.2009.10.013
31 Li N, Dong C F, Man C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy [J]. Corros. Sci., 2021, 180: 109174
doi: 10.1016/j.corsci.2020.109174
32 Wang B, Zhang L W, Su Y, et al. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution [J]. Mater. Des., 2013, 50: 15
doi: 10.1016/j.matdes.2013.02.080
33 Fu Y, Dai C D, Luo H, et al. The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions [J]. Appl. Surf. Sci., 2021, 560: 149854
doi: 10.1016/j.apsusc.2021.149854
34 Xia D H, Pan C C, Qin Z B, et al. Covalent surface modification of LY12 aluminum alloy surface by self-assembly dodecyl phosphate film towards corrosion protection [J]. Prog. Org. Coat., 2020, 143: 105638
35 Deng C M, Zhu Y, Sun S K, et al. Analysis of failure causes of epoxy-phenolic coated tinplate after boiling sterilization [J]. Eng. Fail. Anal., 2022, 135: 106129
doi: 10.1016/j.engfailanal.2022.106129
36 Paszternák A, Felhősi I, Pászti Z, et al. Surface analytical characterization of passive iron surface modified by alkyl-phosphonic acid layers [J]. Electrochim. Acta, 2010, 55: 804
doi: 10.1016/j.electacta.2009.09.023
37 Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
doi: 10.1016/j.corsci.2011.12.039
38 Peng C, Cao G W, Gu T Z, et al. The effect of dry/wet ratios on the corrosion process of the 6061 Al alloy in simulated Nansha marine atmosphere [J]. Corros. Sci., 2023, 210: 110840
doi: 10.1016/j.corsci.2022.110840
39 Wan Y, Li L J, Jin Y N, et al. Pitting corrosion behavior and mechanism of 5083 aluminum alloy based on dry-wet cycle exposure [J]. Mater. Corros., 2023, 74: 608
[1] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[2] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[3] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[4] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[5] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[6] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[7] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[8] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[9] 庞涛, 刘静, 黄峰, 李闯, 赵国知, 黄先球, 郑建国, 程鹏. 武汉地铁钢轨在典型隧道环境中的腐蚀现状分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 798-804.
[10] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[11] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[12] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[13] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[14] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[15] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.