Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 569-577     CSTR: 32134.14.1005.4537.2022.229      DOI: 10.11902/1005.4537.2022.229
  研究报告 本期目录 | 过刊浏览 |
“高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究
陈庆国1, 唐全宏1, 秦振杰1, 李一凡2, 李磊3, 李轩鹏3(), 袁军涛3, 苏航3, 付安庆3
1.中国石油塔里木油田公司 库尔勒 841000
2.中国石油天然气集团长庆油田公司第十二采油厂 西安 710014
3.中国石油集团工程材料研究院有限公司 石油管材及装备材料服役行为与结构安全国家重点实验室 西安 710077
Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment
CHEN Qingguo1, TANG Quanhong1, QIN Zhenjie1, LI Yifan2, LI Lei3, LI Xuanpeng3(), YUAN Juntao3, SU Hang3, FU Anqing3
1.PetroChina Tarim Oilfield Company, Korla 841000, China
2.The 12th Oil Production Plant of China National Petroleum Corporation Changqing Oilfield Company, Xi'an 710014, China
3.State Key Laboratory for Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
全文: PDF(13007 KB)   HTML
摘要: 

通过微观形貌观察、极化曲线测试、240 ℃-结盐-CO2/O2多因素耦合环境下的模拟实验,明确了热浸铝镀层在油田重沸器管束中的适用性。热浸铝试样主要由纯Al层和舌状Fe2Al5合金层组成,厚度在150~200 μm。模拟油田水中的极化曲线对比结果表明,在30 ℃时,热浸铝试样相比20#钢腐蚀电流密度降低约300倍,具有很好的耐蚀性能。采用高温高压反应釜模拟现场管束服役工况,高温高压模拟工况结果表明,240 ℃-结盐-CO2/O2多因素耦合环境下,20#钢的均匀腐蚀速率为0.68±0.04 mm/a,点蚀深度达到70.5 μm,表面的腐蚀产物主要为Fe3O4和Fe2O3,产物膜内存在大量裂纹等缺陷;而热浸铝镀层腐蚀速率为0.08±0.02 mm/a,腐蚀主要出现在纯Al层,对应的腐蚀产物为Al(OH)3。综合结果表明,热浸铝镀层在240 ℃-结盐-CO2/O2多因素耦合环境下呈现良好的防腐性能。

关键词 热浸铝20#钢换热管束电化学测试高温高压模拟试验    
Abstract

The applicability of hot-dip aluminum (HDA) coating in oilfield reboiler tube bundles is studied by means of micro-morphological observation, polarization curve test, and 240 ℃-salt deposited-CO2/O2 multi-degree coupling environment simulation testing in this work. The HDA sample is mainly composed of pure Al outer layer and tongue-shaped Fe2Al5 inner alloy layer, and the thickness is between 150 and 200 μm. The polarization curves, which measured at 30 ℃ in simulated oilfield water, show that the corrosion current density of the HDA sample is about 300 times lower than that of 20#, and display excellent corrosion resistance. The simulated results at high-temperature-high-pressure environment show that the uniform corrosion rate of 20# steel in extreme environment is 0.68±0.04 mm/a, the maximum pitting depth is 70.5 μm in 240 ℃-salt deposited-CO2/O2 multi-degree coupling environment. In addition, the corrosion scales formed on the surface are consisted Fe3O4 and Fe2O3, and some cracks can be detected in the scales. However, the corrosion rate of the hot-dip aluminum coating is 0.08±0.02 mm/a, the corrosion mainly occurs in the pure Al layer, and the corresponding corrosion scale is Al(OH)3 after simulated testing. The comprehensive results show that the hot-dip aluminum coating exhibits excellent anti-corrosion performance under this complex environment.

Key wordshot-dip aluminum coating    20# steel    heat exchanger tube bundles    electrochemical testing    high-temperature-high-pressure simulation test
收稿日期: 2022-07-13      32134.14.1005.4537.2022.229
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(21908250);宁波市科技创新2025重大专项(2020Z108)
通讯作者: 李轩鹏,E-mail: lixuanpeng127@cnpc.com.cn,研究方向为石油管材及装备腐蚀与防护研究
Corresponding author: LI Xuanpeng, E-mail: lixuanpeng127@cnpc.com.cn
作者简介: 陈庆国,男,1989年生,工程师,硕士生

引用本文:

陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
CHEN Qingguo, TANG Quanhong, QIN Zhenjie, LI Yifan, LI Lei, LI Xuanpeng, YUAN Juntao, SU Hang, FU Anqing. Corrosion Behavior of Hot-dip Aluminum Coating in “High Temperature-salt Deposited-CO2/O2” Multi-degree Coupling Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 569-577.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.229      或      https://www.jcscp.org/CN/Y2023/V43/I3/569

图1  20#钢热浸铝试样截面形貌
图2  热浸铝试样截面形貌及EDS测试结果
图3  热浸铝镀层在高温高压模拟实验前后以及20#钢在实验后的XRD图谱
图4  20#钢和热浸铝试样极化曲线测试结果
SpecimenEcorr / mVVS.Ag/AgClIcorr / μA·cm-2
20#-658.9817.95
HDA coating-680.580.058
表1  电化学参数拟合结果
图5  20#钢去除腐蚀产物前后形貌及最大点蚀深度形貌
图6  20#钢高温高压模拟试验后腐蚀产物微观形貌
图7  20#钢高温高压模拟试验后腐蚀产物截面形貌
图8  20#钢腐蚀产物截面形貌及C,O,Fe分布
图9  热浸铝试样腐蚀后宏观形貌及腐蚀产物膜微观形貌
图10  热浸铝试样腐蚀后截面形貌
图11  热津镀铝试样腐蚀产物截面形貌及C,O,Al,Fe分布
1 Mo Y Q, Sun L, Hou Y H, et al. Heat exchanger failure cases statistics analysis in refinery [J]. Guangzhou Chem. Ind., 2016, 44(20): 129
1 莫烨强, 孙 亮, 侯艳宏 等. 炼厂换热器腐蚀失效案例统计分析 [J]. 广州化工, 2016, 44(20): 129
2 Wang Y Z. Causes and countermeasures for corrosion of tube bundles in the bottom reboiler of condensate stabilizer tower [J]. Chem. Enterp. Manage., 2014, (29): 187
2 王永忠. 凝析油稳定塔塔底重沸器管束腐蚀原因及对策 [J]. 化工管理, 2014, (29): 187
3 Wang Z B. Application of electroless-plated Ni-P alloy to improve the corrosion resistance of stabilizer reboiler [J]. Petrochem. Corros. Prot., 2002, 19(6): 23
3 王忠滨. 化学镀镍磷合金提高稳定塔重沸器耐蚀性能 [J]. 石油化工腐蚀与防护, 2002, 19(6): 23
4 Katayama H, Kuroda S. Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area [J]. Corros. Sci., 2013, 76: 35
doi: 10.1016/j.corsci.2013.05.021
5 Liu Y, Li G X, Zheng Y R. Influence of rare earth yttrium on the structure and corrosion resistance of hot-dip aluminum coating [J]. Surf. Technol., 2021, 50(9): 286
5 刘 艺, 李国喜, 郑毅然. 稀土Y对热浸镀铝镀层组织及耐蚀性的影响 [J]. 表面技术, 2021, 50(9): 286
6 Yu S X, Xia Y, Yao M. Effect of rare earth element cerium on properties and microstructure of hot dip aluminum coating on Q235 Steel [J]. Mater. Mech. Eng., 2006, 30(6): 77
6 于升学, 夏 原, 姚 枚. 稀土铈对热浸镀铝层组织和性能的影响 [J]. 机械工程材料, 2006, 30(6): 77
7 Shibli S M A, Meena B N, Remya R. A review on recent approaches in the field of hot dip zinc galvanizing process [J]. Surf. Coat. Technol., 2015, 262: 210
doi: 10.1016/j.surfcoat.2014.12.054
8 Lemmens B, Gonzalez Garcia Y, Corlu B, et al. Study of the electrochemical behaviour of aluminized steel [J]. Surf. Coat. Technol., 2014, 260: 34
doi: 10.1016/j.surfcoat.2014.06.064
9 Panossian Z, Mariaca L, Morcillo M, et al. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere [J]. Surf. Coat. Technol., 2005, 190: 244
doi: 10.1016/j.surfcoat.2004.04.023
10 Kainuma S, Yang M Y, Gao Y, et al. Long-term deterioration mechanism of hot-dip aluminum coating exposed to a coastal-atmospheric environment [J]. Constr. Build. Mater., 2021, 280: 122516
doi: 10.1016/j.conbuildmat.2021.122516
11 Xu X Q, Du X Y, Suo T, et al. Corrosion behavior of hot-dipped aluminum coating in ammonium chloride environment [J]. Surf. Technol., 2019, 48(5): 16
11 徐秀清, 杜小英, 索 涛 等. 热浸铝镀层在氯化铵环境中的腐蚀行为研究 [J]. 表面技术, 2019, 48(5): 16
12 Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
doi: 10.1016/j.apsusc.2018.10.237
13 Han S L, Li H L, Wang S M, et al. Effects of temperature on hot-dip aluminizing process for Preparing hydrogen/tritium permeation barrier [J]. Met. Funct. Mater., 2010, 17(1): 34
13 韩石磊, 李华玲, 王树茂 等. 温度对热浸铝及后续扩散中镀层的影响 [J]. 金属功能材料, 2010, 17(1): 34
14 Cheng W J, Wang C J. Growth of intermetallic layer in the aluminide mild steel during hot-dipping [J]. Surf. Coat. Technol., 2009, 204: 824
doi: 10.1016/j.surfcoat.2009.09.061
15 He S, Sun Y J, Zhang Z H, et al. Corrosion behavior of 20# steel in alkanolamine solution mixed with ionic liquid containing saturated CO2 [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 309
15 贺 三, 孙银娟, 张志浩 等. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 309
16 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
16 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
17 Liu X F, Wang C Y, Zhou J F, et al. Corrosion mechanism of air cooler in a CO2 removal system with amine solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 389
17 刘骁飞, 王春雨, 周俊锋 等. 胺液脱除CO2系统空冷器腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2021, 41: 389
doi: 10.11902/1005.4537.2020.088
18 Gao Q Y, Xu Y X, Hu P W, et al. Corrosion and protection technique of regeneration tower bottom reboiler in natural gas purification unit [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 699
18 高秋英, 徐亦璇, 胡鹏伟 等. 天然气再生塔底重沸器腐蚀与防护技术研究 [J]. 中国腐蚀与防护学报, 2022, 42: 699
doi: 10.11902/1005.4537.2021.224
19 Hua Y, Yue X Q, Liu H F, et al. The evolution and characterisation of the corrosion scales formed on 3Cr steel in CO2-containing conditions relevant to geothermal energy production [J]. Corros. Sci., 2021, 183: 109342
doi: 10.1016/j.corsci.2021.109342
20 Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2- water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
21 Ma Z H, Sun Y T, Lin T, et al. Study on corrosion behavior of different steels in multiple thermal fluids [J]. Petrochem. Ind. Appl., 2012, 31(9): 60
21 马增华, 孙永涛, 林 涛 等. 多元热流体中不同钢材的腐蚀行为研究 [J]. 石油化工应用, 2012, 31(9): 60
22 Wan J C, Fu C Y, Ma Z H, et al. Development of corrosion in oil and gas well with high temperature and high pressure CO2/O2 [J]. Total Corros. Control, 2014, 28(2): 39
22 万金成, 付朝阳, 马增华 等. 油气井高温高压CO2/O2腐蚀研究进展 [J]. 全面腐蚀控制, 2014, 28(2): 39
23 Hua Y, Barker R, Neville A. The effect of O2 content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO2 environments [J]. Appl. Surf. Sci., 2015, 356: 499
doi: 10.1016/j.apsusc.2015.08.116
24 Leng J H, Cheng Y F, Liao K X, et al. Synergistic effect of O2-Cl- on localized corrosion failure of L245N pipeline in CO2-O2-Cl- environment [J]. Eng. Fail. Anal., 2022, 138: 106332
doi: 10.1016/j.engfailanal.2022.106332
25 Foley R T, Nguyen T H. The chemical nature of aluminum corrosion: V. Energy transfer in aluminum dissolution [J]. J. Electrochem. Soc., 1982, 129: 464
doi: 10.1149/1.2123881
26 Nguyen T H, Foley R T. The chemical nature of aluminum corrosion: II. The initial dissolution step [J]. J. Electrochem. Soc., 1982, 129: 27
doi: 10.1149/1.2123768
[1] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[2] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[3] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[4] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[5] 刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[6] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[7] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[8] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[9] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[11] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[12] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[13] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[14] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.
[15] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.