Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 855-861     CSTR: 32134.14.1005.4537.2022.305      DOI: 10.11902/1005.4537.2022.305
  曹楚南科教基金优秀论文专栏 本期目录 | 过刊浏览 |
铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究
倪雨朦1,2,3, 于英杰1, 严慧1,3, 王嵬4, 李瑛1()
1.中国科学院金属研究所 沈阳 110016
2.湖南工业大学材料与先进制造学院 株洲 412007
3.中国科学技术大学材料科学与工程学院 沈阳 110016
4.东北电力大学化学工程学院 吉林 132012
Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating
NI Yumeng1,2,3, YU Yingjie1, YAN Hui1,3, WANG Wei4, LI Ying1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.College of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
4.Department of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
全文: PDF(4354 KB)   HTML
摘要: 

以铜铝/镍石墨可磨耗封严涂层为研究对象,利用有限元方法对涂层腐蚀初期发生的相选择性溶解反应进行仿真模拟,探究涂层选材成分比与其耐蚀性的关系。所建腐蚀模型的几何尺寸和边界条件分别由形貌表征与电化学测试结果而确定。建模模拟后,将模拟结果中的涂层自腐蚀电位及溶解情况分别与极化曲线实测涂层自腐蚀电位及ICP-OES实测涂层的溶解结果对比可见,模拟结果与实测结果一致,验证了模型的可靠性。所建模型在一定程度上阐释了涂层选材与其耐蚀性的关系,为未来涂层的耐蚀设计提供相应的参考。

关键词 可磨耗封严涂层电偶腐蚀有限元腐蚀防护    
Abstract

Abradable seal coatings is widely used in the field of aerospace industry, since it can improve the efficiency of the aero-engine. Due to its special structure and composition, abradable seal coatings would face severe corrosion failure problems. Therefore, the phase-selective dissolution reaction in the early stage of corrosion of the CuAl-NiC abradable seal coating in NaCl solution is simulated by means of finite element method (FEM). Morphology characterization and electrochemical test were conducted to determine the geometric dimensions and boundary conditions required for FEM. The FE simulation was then carried out, while the modeling results were compared with the free-corrosion potential of the coating measured by the polarization curve, and the dissolution results of the ICP-OES test to verify the reliability of the established model. Furthermore, by inputting the composition ratio and the electrochemical properties of substances of a newly designed coating into the established model, its corrosion resistance can be acquired, which will provide some insights for the design of abradable seal coatings.

Key wordsabradable seal coating    galvanic corrosion    finite element    corrosion protection
收稿日期: 2022-09-30      32134.14.1005.4537.2022.305
ZTFLH:  TG174  
基金资助:国家自然科学基金(51671198)
通讯作者: 李瑛,E-mail: liying@imr.ac.cn,研究方向为腐蚀电化学基础理论   
Corresponding author: LI Ying, E-mail: liying@imr.ac.cn   
作者简介: 倪雨朦,女,1993年生,博士,讲师。2012 年考入北京理工大学材料化学专业,后于2016 年考入中国科学院金属研究所,期间师从李瑛研究员攻读博士学位。2021 年毕业后入职湖南工业大学材料与先进制造学院。参与国家自然基金两项,主持企业横向课题一项,获得授权专利三项,在JMST等杂志发表论文4 篇。2022年入围2022 年度株洲市“小荷”行动专项。2022 年获得曹楚南科教基金优秀论文奖。

引用本文:

倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 855-861.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.305      或      https://www.jcscp.org/CN/Y2023/V43/I4/855

图1  用于模拟铜铝/镍石墨可磨耗封严涂层内多元相间电偶腐蚀的三维几何模型
图2  铜铝/镍石墨可磨耗封严涂层表面局部形貌与主要元素Cu、Al、Ni、C的面分布
图3  铜铝/镍石墨可磨耗封严涂层内相分布及多元相间电偶腐蚀模型有限元网格划分示意图
图4  铜铝/镍石墨可磨耗封严涂层表面金属元素的XPS精细谱及拟合结果
图5  Al,Cu,Ni和石墨片的动电位极化曲线
ElementEcorr / VSCEIcorr / μA·cm-2
Al-0.741.10
Cu-0.211.21
Ni-0.301.41
Graphite0.131.33
表1  由动电位极化曲线得到的各纯金属与石墨的Ecorr和Icorr
图6  多元相间电偶腐蚀模型模拟结果
图7  铜铝/镍石墨单独层的动电位极化曲线
图8  铜铝/镍石墨可磨耗封严涂层浸泡于腐蚀介质后,溶液中的Al3+、Cu2+和Ni2+的浓度
ElementMass ratio %Mass gDensity g·cm-3Volume cm3Area cm2
Cu51518.95.733.2
Al552.71.851.5
Ni33338.93.712.4
C11112.095.263.0
表2  铜铝/镍石墨可磨耗封严涂层内各元素参数
图9  铜铝/镍石墨可磨耗封严涂层内相分布示意图
图10  改进后电偶腐蚀模型模拟结果
1 Li Z H, Zhang Z C, Ding L, et al. Microbial contamination and corrosion in aircraft fuel system [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1081
1 李征鸿, 张志超, 丁 磊 等. 飞机燃油系统的微生物污染与腐蚀 [J]. 中国腐蚀与防护学报, 2022, 42: 1081
doi: 10.11902/1005.4537.2021.329
2 Zhao H Y, Gao D L, Zhang T, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-alloy thin wall structure produced through WAAM [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 621
2 赵海洋, 高多龙, 张童 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 621
doi: 10.11902/1005.4537.2021.149
3 Batailly A, Legrand M, Millecamps A, et al. Conjectural bifurcation analysis of the contact-induced vibratory response of an aircraft engine blade [J]. J. Sound Vib., 2015, 348: 239
doi: 10.1016/j.jsv.2015.03.005
4 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
4 余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
5 Zhang F, Lan H, Huang C B, et al. Corrosion resistance of Ti3Al/BN abradable seal coating [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 1114
doi: 10.1007/s40195-014-0133-4
6 Rajendran R. Gas turbine coatings-an overview [J]. Eng. Fail. Anal., 2012, 26: 355
doi: 10.1016/j.engfailanal.2012.07.007
7 Legrand M, Pierre C, Cartraud P, et al. Two-dimensional modeling of an aircraft engine structural bladed disk-casing modal interaction [J]. J. Sound Vib., 2009, 319: 366
doi: 10.1016/j.jsv.2008.06.019
8 Wang H G. Criteria for analysis of abradable coatings [J]. Surf. Coat. Technol., 1996, 79: 71
doi: 10.1016/0257-8972(95)02443-3
9 Miller R A. Current status of thermal barrier coatings—An overview [J]. Surf. Coat. Technol., 1987, 30: 1
doi: 10.1016/0257-8972(87)90003-X
10 Mahesh R A, Jayaganthan R, Prakash S. Oxidation behavior of HVOF sprayed Ni-5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition [J]. Mater. Sci. Eng., 2008, 475A: 327
11 Borel M O, Nicoll A R, Schläpfer H W, et al. The wear mechanisms occurring in abradable seals of gas turbines [J]. Surf. Coat. Technol., 1989, 39: 117
12 Faraoun H I, Seichepine J L, Coddet C, et al. Modelling route for abradable coatings [J]. Surf. Coat. Technol., 2006, 200: 6578
doi: 10.1016/j.surfcoat.2005.11.105
13 Matějíček J, Kolman B, Dubský J, et al. Alternative methods for determination of composition and porosity in abradable materials [J]. Mater. Charact., 2006, 57: 17
doi: 10.1016/j.matchar.2005.12.004
14 Johnston R E, Evans W J. Freestanding abradable coating manufacture and tensile test development [J]. Surf. Coat. Technol., 2007, 202: 725
doi: 10.1016/j.surfcoat.2007.05.082
15 Sporer D, Refke A, Dratwinski M, et al. New high-temperature seal system for increased efficiency of gas turbines [J]. Seal. Technol., 2008, 2008: 9
16 Faraoun H I, Grosdidier T, Seichepine J L, et al. Improvement of thermally sprayed abradable coating by microstructure control [J]. Surf. Coat. Technol., 2006, 201: 2303
doi: 10.1016/j.surfcoat.2006.03.047
17 Fois N, Stringer J, Marshall M B. Adhesive transfer in aero-engine abradable linings contact [J]. Wear, 2013, 304: 202
doi: 10.1016/j.wear.2013.04.033
18 Mutasim Z, Hsu L, Wong E. Evaluation of plasma sprayed abradable coatings [J]. Surf. Coat. Technol., 1992, 54/55: 39
19 Rhys-Jones T N. Thermally sprayed coating systems for surface protection and clearance control applications in aero engines [J]. Surf. Coat. Technol., 1990, 43/44: 402
20 Cui Z Y, Ge F, Wang X. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
20 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
21 Wang D, Pan Q, Xia C. Corrosion and Protection of Battleplan [M]. Beijing: Aviation Industry Press, 2006
22 Lei B, Hu S N, Wang Z H, et al. Corrosion-detection and assessment methods for abradable sealing coatings [J]. Corros. Sci. Prot. Technol., 2017, 29: 651
22 雷 冰, 胡胜楠, 王祖华 等. 封严涂层腐蚀检测及评价方法研究 [J]. 腐蚀科学与防护技术, 2017, 29: 651
23 Alexopoulos N D, Dalakouras C J, Skarvelis P, et al. Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications [J]. Corros. Sci., 2012, 55: 289
doi: 10.1016/j.corsci.2011.10.032
24 Vogelesang L B, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. J. Mater. Process. Technol., 2000, 103: 1
doi: 10.1016/S0924-0136(00)00411-8
25 Zhang F, Xu C G, Lan H, et al. Corrosion behavior of an abradable seal coating system [J]. J. Therm. Spray Technol., 2014, 23: 1019
doi: 10.1007/s11666-014-0115-0
26 Lei B, Peng M X, Liu L, et al. Galvanic corrosion performance of An Al–BN abradable seal coating system in chloride solution [J]. Coatings, 2020, 11: 9
doi: 10.3390/coatings11010009
27 Lei B, Li M, Zhao Z X, et al. Corrosion mechanism of an Al-BN abradable seal coating system in chloride solution [J]. Corros. Sci., 2014, 79: 198
doi: 10.1016/j.corsci.2013.11.007
28 Ni Y M, Zhang F, Njoku D I, et al. Corrosion mechanism of CuAl-NiC abradable seal coating system—The influence of porosity, multiphase, and multilayer structure on the corrosion failure [J]. J. Mater. Sci. Technol., 2021, 88: 258
doi: 10.1016/j.jmst.2021.01.068
29 Sun W, Ouyang P X, Liu T, et al. Numerical Predictions of the influence of structure on thermal shock resistance of CuAl-polyester abradable sealing coating [J]. J. Therm. Spray Technol., 2022, 31: 485
doi: 10.1007/s11666-022-01332-0
30 Du S Y, Zhang Y, Meng M J, et al. The role of water transport in the failure of silicone rubber coating for implantable electronic devices [J]. Prog. Org. Coat., 2021, 159: 106419
31 Feickert A J, Croll S G. Failure of coatings over joints and gaps: finite-element models [J]. J. Coat. Technol. Res., 2018, 15: 281
doi: 10.1007/s11998-017-9986-6
32 Guo Y B, Lu X Q, Li W Y, et al. Interfacial stress and failure analysis for piston ring coatings under dry running condition [J]. Tribol. Trans., 2013, 56: 1027
doi: 10.1080/10402004.2013.798879
33 Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
[1] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[2] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[3] 刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[4] 刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[5] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[6] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[7] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[8] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[9] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[10] 蔡建敏, 关蕾, 李雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[11] 丁奕, 王力伟, 刘德运, 王昕. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[12] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[13] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[14] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[15] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.