Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 847-854     CSTR: 32134.14.1005.4537.2022.265      DOI: 10.11902/1005.4537.2022.265
  曹楚南科教基金优秀论文专栏 本期目录 | 过刊浏览 |
电化学-电感耦合等离子体原子发射光谱联用技术及其在金属腐蚀研究中的应用
于英杰, 李瑛()
中国科学院金属研究所 沈阳 110016
A Novel Technique of Electrochemical-inductively Coupled Plasma Atomic Emission Spectrometry and Its Application in Corrosion Research
YU Yingjie, LI Ying()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2315 KB)   HTML
摘要: 

为了提高金属材料腐蚀理论研究的广度和深度,近年来,一种电化学-电感耦合等离子体原子发射光谱联用技术应运而生。在该技术中,电感耦合等离子体原子发射光谱仪被耦联到自制电化学流动池的下游,用以跟踪溶解在腐蚀溶液中的腐蚀产物的浓度瞬变,使实时测定金属电极元素溶解速率成为可能。本文简要介绍了该技术的工作原理和发展,并对目前该技术在金属腐蚀研究中的应用进行了总结,指出了该技术存在的问题和今后的发展方向。

关键词 元素分析电化学电感耦合等离子体原子发射光谱金属腐蚀    
Abstract

To improve breadth and depth of corrosion theory for metal materials, a combined technique of electrochemical-inductively coupled plasma atomic emission spectrometry (ICP-OES) was developed in recent years. In this technique, an inductively coupled plasma atomic emission spectrometer was coupled to the downstream of a home-built electrochemical flow cell to track the concentration transient of the corrosion products dissolved in the corrosion medium, so that the elemental dissolution rates of metal electrode could be determined in real time. The working principles and the development of this technology were introduced briefly and the applications of this technology in metal corrosion research were summarized at present. Finally, the existing problems and future directions for development of this technique were pointed out.

Key wordselemental analysis    electrochemical    ICP-OES    metal corrosion
收稿日期: 2022-08-29      32134.14.1005.4537.2022.265
ZTFLH:  TG172  
基金资助:国家自然科学基金(51871227);国家自然科学基金(51671198)
通讯作者: 李瑛,E-mail: liying@imr.ac.cn,研究方向为腐蚀电化学基础理论   
Corresponding author: LI Ying, E-mail: liying@imr.ac.cn   
作者简介: 于英杰,女,1987年生,博士,工程师,中国科学院金属研究所分析测试中心工程师。2006 年考入吉林大学高分子材料与工程专业,后赴美国佛罗里达州立大学攻读分析化学专业硕士学位,2012 年回国后入职中国科学院金属所分析测试中心,期间师从李瑛研究员在职攻读博士学位。现主要从事化学分析和腐蚀电化学方面的研究工作。发表学术论文10 余篇,申请和已授权专利5 项;建立企业标准1 项。获“金属研究所管理和支撑部门青年人才报告会一等奖”,2022 年获得曹楚南科教基金优秀论文奖。现任中文核心期刊《冶金分析》青年编委。

引用本文:

于英杰, 李瑛. 电化学-电感耦合等离子体原子发射光谱联用技术及其在金属腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(4): 847-854.
YU Yingjie, LI Ying. A Novel Technique of Electrochemical-inductively Coupled Plasma Atomic Emission Spectrometry and Its Application in Corrosion Research. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 847-854.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.265      或      https://www.jcscp.org/CN/Y2023/V43/I4/847

图1  电化学-电感耦合等离子体原子发射光谱的示意图[22]
图2  Ogle和Weber设计的电化学流动池示意图以及三维图[22]
图3  用于原位划伤实验的电化学流动池的示意图[25]
图4  新型电化学流动池示意图[26]
图5  磷酸盐转化涂层在0.1 mol/L NaOH溶液中的电化学-ICP-OES溶解曲线[38]
图6  在阴极恒电位 (-1.5 V vs. SCE) 下,AA6061合金在3% NaCl溶液中的元素溶解曲线,测试前预先对金属电极施加-1.8 V的电位进行预活化[30]
图7  纯镁的ICP-OES信号和电流信号与不同电位阶跃信号的曲线[31]
1 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008
1 曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008
2 Huo D X, Liang J L, Li H, et al. Research progress of application of electrochemical corrosion technology [J]. Hot Work. Technol., 2017, 46(10) : 18
2 霍东兴, 梁精龙, 李 慧 等. 腐蚀电化学技术应用研究进展 [J]. 热加工工艺, 2017, 46(10): 18
3 Boucherit N, Goff A H L, Joiret S. Influence of Ni, Mo, and Cr on pitting corrosionof steels studied by Raman spectroscopy [J]. Corrosion, 1992, 48: 569
doi: 10.5006/1.3315974
4 Mechehoud F, Benaioun N E, Hakiki N E, et al. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM) [J]. Appl. Surf. Sci., 2018, 433: 66
doi: 10.1016/j.apsusc.2017.10.094
5 Martinez-Lombardia E, Lapeire L, Maurice V, et al. Use of local electrochemical methods (SECM, EC-STM) and AFM to differentiate microstructural effects (EBSD) on very pure copper [J]. Corros. Sci. Technol., 2017, 16: 1
doi: 10.14773/cst.2017.16.1.1
6 Li S X, Hihara L H. In situ Raman spectroscopic identification of rust formation in Evans' droplet experiments [J]. Electrochem. Commun., 2012, 18: 48
doi: 10.1016/j.elecom.2012.02.014
7 Maurice V, Marcus P. Progress in corrosion science at atomic and nanometric scales [J]. Prog. Mater. Sci., 2018, 95: 132
doi: 10.1016/j.pmatsci.2018.03.001
8 Mahato N, Singh M M. Investigation of passive film properties and pitting resistance of AISI 316 in aqueous ethanoic acid containing chloride ions using electrochemical impedance spectroscopy(EIS) [J]. Port. Electrochim. Acta, 2011, 29: 233
doi: 10.4152/pea.201104233
9 Nieuwoudt M K, Comins J D, Cukrowski I. Analysis of the composition of the passive film on iron under pitting conditions in 0.05 M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS [J]. J. Raman. Spectrosc., 2012, 43: 928
doi: 10.1002/jrs.3109
10 Revilla R I, Liang J W, Godet S, et al. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM [J]. J. Electrochem. Soc., 2016, 164: C27
doi: 10.1149/2.0461702jes
11 Sherif E S M, Erasmus R M, Comins J D. In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions [J]. Electrochim. Acta, 2010, 55: 3657
doi: 10.1016/j.electacta.2010.01.117
12 Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
doi: 10.1149/2.0061610jes
13 Bernard M C, Goff A H L, Massinon D, et al. Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy [J]. Corros. Sci., 1993, 35: 1339
doi: 10.1016/0010-938X(93)90356-L
14 Örnek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164
doi: 10.1016/j.corsci.2015.06.035
15 Voith M, Luckeneder G, Hassel A W. In situ identification and quantification in a flow cell with AAS downstream analytics [J]. J. Solid State Electrochem., 2012, 16: 3473
doi: 10.1007/s10008-012-1887-0
16 Klemm S O, Topalov A A, Laska C A, et al. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS [J]. Electrochem. Commun., 2011, 13: 1533
doi: 10.1016/j.elecom.2011.10.017
17 Hou L F, Raveggi M, Chen X B, et al. Investigating the passivity and dissolution of a corrosion resistant Mg-33at.%Li alloy in aqueous chloride using online ICP-MS [J]. J. Electrochem. Soc., 2016, 163: C324
doi: 10.1149/2.0871606jes
18 Hou X D, Jones B T. Inductively Coupled Plasma/Optical Emission Spectrometry [A]. Meyers R A. Encyclopedia of Analytical Chemistry, Wiley, 2000
19 Boss C B, Fredeen K J. Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry [M]. 3rd ed. Waltham: Perkin Elmer, 1997
20 Xin R X. Plasma Emission Spectrum Analysis [M]. 2nd ed. Beijing: Chemical Industry Press, 2011
20 辛仁轩. 等离子体发射光谱分析 [M]. 第2版. 北京: 化学工业出版社, 2011
21 Ogle K, Weber S. Anodic dissolution of 304 stainless steel using atomic emission spectroelectrochemistry [J]. J. Electrochem. Soc., 2000, 147: 1770
doi: 10.1149/1.1393433
22 Ogle K, Baeyens J, Swiatowska J, et al. Atomic emission spectroelectrochemistry applied to dealloying phenomena: I. The formation and dissolution of residual copper films on stainless steel [J]. Electrochim. Acta, 2009, 54: 5163
doi: 10.1016/j.electacta.2009.01.037
23 Mercier D, Van Overmeere Q, Santoro R, et al. In-situ optical emission spectrometry during galvanostatic aluminum anodising [J]. Electrochim. Acta, 2011, 56: 1329
doi: 10.1016/j.electacta.2010.10.092
24 Shkirskiy V, Maciel P, Deconinck J, et al. On the time resolution of the atomic emission spectroelectrochemistry method [J]. J. Electrochem. Soc., 2016, 163: C37
doi: 10.1149/2.0991602jes
25 Yan Y M, Zhou P, Gharbi O, et al. Investigating ion release using inline ICP during in situ scratch testing of an Mg-Li(-Al-Y-Zr) alloy [J]. Electrochem. Commun., 2019, 99: 46
doi: 10.1016/j.elecom.2019.01.001
26 Yu Y J, Li Y. New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES [J]. Corros. Sci., 2020, 168: 108568
doi: 10.1016/j.corsci.2020.108568
27 Ogle K. Atomic Emission Spectroelectrochemistry: a new look at the corrosion, dissolution & passivation of complex materials [J]. Corros. Mater., 2012, 37: 60
28 Ogle K. Atomic emission spectroelectrochemistry: real-time rate measurements of dissolution, corrosion, and passivation [J]. Corrosion, 2019, 75: 1398
doi: 10.5006/3336
29 Zhou P, Hutchison M J, Scully J R, et al. The anodic dissolution of copper alloys: pure copper in synthetic tap water [J]. Electrochim. Acta, 2016, 191: 548
doi: 10.1016/j.electacta.2016.01.093
30 Serdechnova M, Volovitch P, Brisset F, et al. On the cathodic dissolution of Al and Al alloys [J]. Electrochim. Acta, 2014, 124: 9
doi: 10.1016/j.electacta.2013.09.145
31 Światowska J, Volovitch P, Ogle K. The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry [J]. Corros. Sci., 2010, 52: 2372
doi: 10.1016/j.corsci.2010.02.038
32 Rossrucker L, Samaniego A, Grote J P, et al. The pH dependence of magnesium dissolution and hydrogen evolution during anodic polarization [J]. J. Electrochem. Soc., 2015, 162: C333
doi: 10.1149/2.0621507jes
33 Lebouil S, Gharbi O, Volovitch P, et al. Mg dissolution in phosphate and chloride electrolytes: insight into the mechanism of the negative difference effect [J]. Corrosion, 2015, 71: 234
doi: 10.5006/1459
34 Han J, Vivier V, Ogle K. Refining anodic and cathodic dissolution mechanisms: combined AESEC-EIS applied to Al-Zn pure phase in alkaline solution [J]. npj Mater. Degrad., 2020, 4: 19
doi: 10.1038/s41529-020-0123-0
35 Gharbi O, Birbilis N, Ogle K. In-situ monitoring of alloy dissolution and residual film formation during the pretreatment of Al-Alloy AA2024-T3 [J]. J. Electrochem. Soc., 2016, 163: C240
doi: 10.1149/2.1121605jes
36 Zhou P, Erning J W, Ogle K. Interactions between elemental components during the dealloying of Cu-Zn alloys [J]. Electrochim. Acta, 2019, 293: 290
doi: 10.1016/j.electacta.2018.09.181
37 Lebouil S, Tardelli J, Rocca E, et al. Dealloying of Al2Cu, Al7Cu2Fe, and Al2CuMg intermetallic phases to form nanoparticulate copper films [J]. Mater. Corros., 2014, 65: 416
38 Jiang L, Wolpers M, Volovitch P, et al. The degradation of phosphate conversion coatings by electrochemically generated hydroxide [J]. Corros. Sci., 2012, 55: 76
doi: 10.1016/j.corsci.2011.10.004
[1] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[2] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[3] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[4] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[5] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[6] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[7] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[8] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[9] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[10] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[11] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[12] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[13] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[14] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[15] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.