|
|
液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响 |
任黄威1, 廖伯凯2, 崔琳晶1, 项腾飞1,3( ) |
1.安徽工业大学建筑工程学院 马鞍山 243002 2.广州大学化学化工学院 广州 510006 3.先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002 |
|
Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film |
REN Huangwei1, LIAO Bokai2, CUI Linjing1, XIANG Tengfei1,3( ) |
1.School of Civil Engineering, Anhui University of Technology, Ma'anshan 243002, China 2.School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China 3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Ma'anshan 243002, China |
引用本文:
任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
REN Huangwei,
LIAO Bokai,
CUI Linjing,
XIANG Tengfei.
Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 862-870.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.289
或
https://www.jcscp.org/CN/Y2023/V43/I4/862
|
1 |
Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
|
1 |
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
|
2 |
Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
|
2 |
徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
|
3 |
Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer [J]. Chin. J. Eng., 2018, 40: 649
|
3 |
于 阳, 卢 琳, 李晓刚. 微区电化学技术在薄液膜大气腐蚀中的应用 [J]. 工程科学学报, 2018, 40: 649
|
4 |
Zhang J B, Wang J, Wang Y H, et al. The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion [J]. Mar. Sci., 2005, 29(7): 17
|
4 |
张际标, 王 佳, 王燕华 等. 海盐粒子沉积下碳钢的大气腐蚀初期行为 [J]. 海洋科学, 2005, 29(7): 17
|
5 |
Liu Z J, Wang W, Wang J, et al. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method [J]. Corros. Sci., 2014, 80: 523
doi: 10.1016/j.corsci.2013.11.012
|
6 |
Wang J. The Role of Liquid Film Pattern in Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2017
|
6 |
王 佳. 液膜形态在大气腐蚀中的作用 [M]. 北京: 化学工业出版社, 2017
|
7 |
Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
doi: 10.1016/j.corsci.2011.01.031
|
8 |
Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion [J]. Materials, 2019, 12: 1065
doi: 10.3390/ma12071065
|
9 |
Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
doi: 10.1016/j.corsci.2020.108697
|
10 |
Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
|
10 |
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
|
11 |
Huang H L, Pan Z Q, Guo X P, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer [J]. Trans. Nonferrous. Met. Soc. China, 2014, 24: 285
doi: 10.1016/S1003-6326(14)63059-4
|
12 |
Zhang X X, Gao Z M, Hu W B, et al. Correlation between corrosion behavior and image information of Q235 steel beneath thin electrolyte film [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 444
|
12 |
张新新, 高志明, 胡文彬 等. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 444
doi: 10.11902/1005.4537.2017.068
|
13 |
Lin X Z, Yang L, Mei Y J, et al. Corrosion electrochemical behavior beneath thin electrolyte layer of potassium formate solution of Cd-plated 4130 steel used for aircraft landing gear [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 567
|
13 |
林修洲, 杨 丽, 梅拥军 等. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 567
doi: 10.11902/1005.4537.2016.221
|
14 |
Lin C, Xiao Z Y. Electrochemical corrosion behavior of carbon steel under thin electrolyte layer containing NaCl [J]. Corros. Prot., 2014, 35: 316
|
14 |
林 翠, 肖志阳. 碳钢在NaCl薄液膜下的电化学腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 316
|
15 |
Fu Y K, Lin X Z, Zhang R H, et al. Corrosion electrochemistry behavior of 2024 aluminum alloy under thin electrolyte layers of potassium acetate deicing fluid [J]. J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.), 2020, 33(1): 8
|
15 |
付英奎, 林修洲, 张润华 等. 醋酸钾型除冰液薄液膜厚度对飞机用2024铝合金腐蚀电化学行为的影响 [J]. 四川轻化工大学学报(自然科学版), 2020, 33(1): 8
|
16 |
Hu L L, Zhao X Y, Liu P, et al. Effect of AC electric field and thickness of electrolyte film on corrosion behavior of A6082-T6 al alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 342
|
16 |
胡露露, 赵旭阳, 刘 盼 等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 342
doi: 10.11902/1005.4537.2019.234
|
17 |
Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
|
18 |
Zhang J L, Gu C D, Tu J P. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection [J]. ACS Appl. Mater. Interfaces, 2017, 9: 11247
doi: 10.1021/acsami.7b00972
|
19 |
Park K C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps [J]. Nature, 2016, 531: 78
doi: 10.1038/nature16956
|
20 |
Zhang H L, Ou J F, Fang X Z, et al. Robust superhydrophobic fabric via UV-accelerated atmospheric deposition of polydopamine and silver nanoparticles for solar evaporation and water/oil separation [J]. Chem. Eng. J., 2022, 429: 132539
doi: 10.1016/j.cej.2021.132539
|
21 |
Ouyang Y B, Zhao J, Qiu R, et al. Nanowall enclosed architecture infused by lubricant: a bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel [J]. Surf. Coat. Technol., 2020, 381: 125143
doi: 10.1016/j.surfcoat.2019.125143
|
22 |
Wei D S, Wang J G, Li S Y, et al. Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy [J]. Chem. Eng. J., 2021, 425: 130450
doi: 10.1016/j.cej.2021.130450
|
23 |
Xiang T F, Ren H W, Zhang Y L, et al. Rational design of PDMS/paraffin infused surface with enhanced corrosion resistance and interface erosion mechanism [J]. Mater. Des., 2022, 215: 110450
doi: 10.1016/j.matdes.2022.110450
|
24 |
Van den Steen N, Simillion H, Dolgikh O, et al. An integrated modeling approach for atmospheric corrosion in presence of a varying electrolyte film [J]. Electrochim. Acta, 2016, 187: 714
doi: 10.1016/j.electacta.2015.11.010
|
25 |
Zhao Q Y, Hui X R, Wang Y N, et al. Study on the inhibited corrosion of low alloy steel by biomineralized film in simulative marine atmosphere [J]. Surf. Technol., 2021, 50(6): 272
|
25 |
赵倩玉, 惠芯蕊, 王亚楠 等. 模拟海洋大气环境下生物矿化膜抑制低合金钢腐蚀行为研究 [J]. 表面技术, 2021, 50(6): 272
|
26 |
Nie L L. Corrosion behavior of pure magnesium, AZ9ID and ZE41 magnesium alloy under thin electrolyte laver based on in situ and nondestructive electrochemical techniques [D]. Hangzhou: Zhejiang University, 2016
|
26 |
聂林林. 基于原位无损的电化学技术对纯镁和镁合金AZ91D及ZE41薄液膜腐蚀行为研究 [D]. 杭州: 浙江大学, 2016
|
27 |
Xiang T F, Liu J, Liu Q W, et al. Self-healing solid slippery surface with porous structure and enhanced corrosion resistance [J]. Chem. Eng. J., 2021, 417: 128083
doi: 10.1016/j.cej.2020.128083
|
28 |
She Z X, Li Q, Zhang L W, et al. Investigation of water transportation behavior of polypropylene coating by using electrochemical impedance spectrum [J]. Surf. Technol., 2021, 50(2): 321
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|