Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 862-870     CSTR: 32134.14.1005.4537.2022.289      DOI: 10.11902/1005.4537.2022.289
  曹楚南科教基金优秀论文专栏 本期目录 | 过刊浏览 |
液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响
任黄威1, 廖伯凯2, 崔琳晶1, 项腾飞1,3()
1.安徽工业大学建筑工程学院 马鞍山 243002
2.广州大学化学化工学院 广州 510006
3.先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243002
Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film
REN Huangwei1, LIAO Bokai2, CUI Linjing1, XIANG Tengfei1,3()
1.School of Civil Engineering, Anhui University of Technology, Ma'anshan 243002, China
2.School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Ma'anshan 243002, China
全文: PDF(9556 KB)   HTML
摘要: 

利用电沉积法在低碳钢表面上构建了多孔微纳结构并灌注润滑剂制备出一种稳定的固态超滑表面 (SSS)。采用电化学测试,扫描电镜 (SEM) 和X射线衍射仪 (XRD) 等手段研究不同液膜厚度 (500,250,100和50 μm) 下SSS腐蚀防护行为及腐蚀后的微观结构变化规律。结果表明:在薄液膜腐蚀初期,随着薄液膜厚度的降低,SSS的腐蚀行为呈现较小差异,在100 μm厚度时SSS具有最大的阻抗,浸泡1 d后极限扩散电流密度为4.899×10-6 A·cm-2 (在-1.4 V电位下),拟合后的阻抗值达到1.54×105 Ω·cm2;即使浸泡7 d后仍具有6.98×104 Ω·cm2的阻抗值,并难以检测到腐蚀产物的生成,表现出优异的稳定性和耐蚀性。

关键词 固态超滑表面电化学测试薄液膜腐蚀行为润湿性    
Abstract

A stable solid slippery surface (SSS) was fabricated by constructing micro-nano structure on the surface of low carbon steel via electrodeposition method and then lubricant was infused. The corrosion behavior of SSS and the changes of surface morphology and composition after corrosion test under liquid films of different thicknesses (500, 250, 100 and 50 μm) was characterized by means of electrochemical tests, scanning electron microscopy (SEM) and X-ray diffractometer (XRD) etc. The results showed that in the early stage of thin liquid film corrosion, as the thickness of the thin liquid film decreases, the corrosion behavior of SSS shows small differences, and the SSS showed the largest corrosion resistance when the thickness of thin liquid film was 100 μm. After immersion for 1 d, the limited diffusion current density is 4.899×10-6 A·cm-2 (at -1.4 V), and the fitted impedance value reaches 1.54×105 Ω·cm2. Even after soaking for 7 d, it still exhibited an impedance value of 6.98×104 Ω·cm2, and it was hard to detect the formation of corrosion products, demonstrated its excellent stability and corrosion resistance.

Key wordssolid slippery surface    electrochemical test    thin liquid film    corrosion behavior    wettability
收稿日期: 2022-09-19      32134.14.1005.4537.2022.289
ZTFLH:  TG174  
基金资助:国家自然科学基金(52201056);安徽高校自然科学研究重点项目(KJ2021A0377)
通讯作者: 项腾飞,E-mail: xiangtf@ahut.edu.cn,研究方向为超疏水/超滑防腐   
Corresponding author: XIANG Tengfei, E-mail: xiangtf@ahut.edu.cn   
作者简介: 任黄威,男,1998年生,硕士生
廖伯凯,2018 年博士毕业于华中科技大学,博士后工作于香港理工大学,广州大学化学化工学院副教授、 硕士生导师。长期从事缓蚀剂、腐蚀电化学相关领域研究。在《Corrosion Science》等期刊上发表论文40 余篇,高被引论文3 篇,公开中国发明专利13 项,参编专著3 部;主持国家自然科学基金青年基金等项目6 项;现兼任中国腐蚀与防护学会理事、中国腐蚀与防护学会缓蚀剂与水处理专委会副秘书长、中国腐蚀 与防护学会腐蚀电化学及测试方法专委会委员、广州腐蚀与防护学会副秘书长;《中国腐蚀与防护学 报》、《Rare Metals》等期刊青年/客座编委;《Corrosion Science》、《Chemical Engineering Journal》等期刊审 稿专家。2022 年获得曹楚南科教基金优秀论文奖。

引用本文:

任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
REN Huangwei, LIAO Bokai, CUI Linjing, XIANG Tengfei. Effect of Liquid Film Thickness on Corrosion Behavior of Solid Slippery Surface under Thin Liquid Film. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 862-870.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.289      或      https://www.jcscp.org/CN/Y2023/V43/I4/862

图1  SSS制备过程示意图
图2  薄液膜试验装置图
图3  超疏水表面形貌及表面接触角,固态超滑表面形貌[23]、表面接触角、表面滑动行为、涂层断面厚度及EDS谱
图4  SSS在各液膜厚度下不同浸泡时间的阴极极化曲线和-1.4 V下的极限扩散电流
图5  SSS在各液膜厚度下不同浸泡时间的Nyquist及Bode曲线图
图6  SSS在各液膜厚度下的等效电路图
Thickness / μmt / dR1 / Ω·cm2Q1 / F·cm2n1R2 / Ω·cm2Q2 / F·cm2n2R3 / Ω·cm2W / Ω·cm2
500158.872.12×10-60.772.18×1033.45×10-60.458.30×105-
259.786.17×10-60.751.34×1037.20×10-60.538.08×105-
459.318.66×10-60.731.17×1031.03×10-60.617.84×105-
761.501.03×10-60.741.02×1034.58×10-60.467.41×105-
250188.485.82×10-60.892.56×1032.37×10-60.471.61×106-
289.612.65×10-60.801.74×1031.66×10-50.365.05×105-
490.491.20×10-50.791.48×1033.11×10-50.493.26×105-
792.573.76×10-50.831.39×1034.93×10-50.357.79×104-
1001130.62.88×10-60.821.54×1055.24×10-60.783.68×106-
2130.54.07×10-60.828.92×1043.70×10-60.693.67×106-
4133.15.78×10-60.788.53×1042.72×10-50.481.16×106-
7134.61.01×10-50.726.98×1042.44×10-50.696.49×105-
501157.42.57×10-60.787.53×1031.72×10-60.627.06×1052.86×10-5
2158.57.25×10-60.766.32×1031.50×10-60.375.21×1053.27×10-5
4159.28.78×10-60.794.69×1032.42×10-50.351.54×1053.69×10-5
7159.99.46×10-50.803.13×1031.10×10-50.385.29×1044.44×10-5
表1  SSS在各液膜厚度下不同浸泡时间的电化学参数
图7  不同液膜厚度下腐蚀后SSS的接触角和滑动角及液膜厚度为100 μm条件下SSS的延时滑动图像
图8  不同液膜厚度下腐蚀后样品表面形貌
Thickness μmNiCOFe
50093.704.890.720.69
25090.297.551.490.68
10092.155.301.471.08
5094.473.831.190.51
表2  不同液膜厚度下腐蚀后样品表面元素分布及含量 (mass fraction / %)
图9  不同液膜厚度下腐蚀后样品的XRD谱
图10  SSS防腐机理示意图
1 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
1 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
2 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
2 徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
3 Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer [J]. Chin. J. Eng., 2018, 40: 649
3 于 阳, 卢 琳, 李晓刚. 微区电化学技术在薄液膜大气腐蚀中的应用 [J]. 工程科学学报, 2018, 40: 649
4 Zhang J B, Wang J, Wang Y H, et al. The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion [J]. Mar. Sci., 2005, 29(7): 17
4 张际标, 王 佳, 王燕华 等. 海盐粒子沉积下碳钢的大气腐蚀初期行为 [J]. 海洋科学, 2005, 29(7): 17
5 Liu Z J, Wang W, Wang J, et al. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method [J]. Corros. Sci., 2014, 80: 523
doi: 10.1016/j.corsci.2013.11.012
6 Wang J. The Role of Liquid Film Pattern in Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2017
6 王 佳. 液膜形态在大气腐蚀中的作用 [M]. 北京: 化学工业出版社, 2017
7 Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
doi: 10.1016/j.corsci.2011.01.031
8 Li Z L, Fu D M, Li Y, et al. Application of an electrical resistance sensor-based automated corrosion monitor in the study of atmospheric corrosion [J]. Materials, 2019, 12: 1065
doi: 10.3390/ma12071065
9 Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
doi: 10.1016/j.corsci.2020.108697
10 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
10 王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
11 Huang H L, Pan Z Q, Guo X P, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer [J]. Trans. Nonferrous. Met. Soc. China, 2014, 24: 285
doi: 10.1016/S1003-6326(14)63059-4
12 Zhang X X, Gao Z M, Hu W B, et al. Correlation between corrosion behavior and image information of Q235 steel beneath thin electrolyte film [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 444
12 张新新, 高志明, 胡文彬 等. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 444
doi: 10.11902/1005.4537.2017.068
13 Lin X Z, Yang L, Mei Y J, et al. Corrosion electrochemical behavior beneath thin electrolyte layer of potassium formate solution of Cd-plated 4130 steel used for aircraft landing gear [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 567
13 林修洲, 杨 丽, 梅拥军 等. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 567
doi: 10.11902/1005.4537.2016.221
14 Lin C, Xiao Z Y. Electrochemical corrosion behavior of carbon steel under thin electrolyte layer containing NaCl [J]. Corros. Prot., 2014, 35: 316
14 林 翠, 肖志阳. 碳钢在NaCl薄液膜下的电化学腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 316
15 Fu Y K, Lin X Z, Zhang R H, et al. Corrosion electrochemistry behavior of 2024 aluminum alloy under thin electrolyte layers of potassium acetate deicing fluid [J]. J. Sichuan Univ. Sci. Eng. (Nat. Sci. Ed.), 2020, 33(1): 8
15 付英奎, 林修洲, 张润华 等. 醋酸钾型除冰液薄液膜厚度对飞机用2024铝合金腐蚀电化学行为的影响 [J]. 四川轻化工大学学报(自然科学版), 2020, 33(1): 8
16 Hu L L, Zhao X Y, Liu P, et al. Effect of AC electric field and thickness of electrolyte film on corrosion behavior of A6082-T6 al alloy [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 342
16 胡露露, 赵旭阳, 刘 盼 等. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 342
doi: 10.11902/1005.4537.2019.234
17 Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
18 Zhang J L, Gu C D, Tu J P. Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection [J]. ACS Appl. Mater. Interfaces, 2017, 9: 11247
doi: 10.1021/acsami.7b00972
19 Park K C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps [J]. Nature, 2016, 531: 78
doi: 10.1038/nature16956
20 Zhang H L, Ou J F, Fang X Z, et al. Robust superhydrophobic fabric via UV-accelerated atmospheric deposition of polydopamine and silver nanoparticles for solar evaporation and water/oil separation [J]. Chem. Eng. J., 2022, 429: 132539
doi: 10.1016/j.cej.2021.132539
21 Ouyang Y B, Zhao J, Qiu R, et al. Nanowall enclosed architecture infused by lubricant: a bio-inspired strategy for inhibiting bio-adhesion and bio-corrosion on stainless steel [J]. Surf. Coat. Technol., 2020, 381: 125143
doi: 10.1016/j.surfcoat.2019.125143
22 Wei D S, Wang J G, Li S Y, et al. Novel corrosion-resistant behavior and mechanism of a biomimetic surface with switchable wettability on Mg alloy [J]. Chem. Eng. J., 2021, 425: 130450
doi: 10.1016/j.cej.2021.130450
23 Xiang T F, Ren H W, Zhang Y L, et al. Rational design of PDMS/paraffin infused surface with enhanced corrosion resistance and interface erosion mechanism [J]. Mater. Des., 2022, 215: 110450
doi: 10.1016/j.matdes.2022.110450
24 Van den Steen N, Simillion H, Dolgikh O, et al. An integrated modeling approach for atmospheric corrosion in presence of a varying electrolyte film [J]. Electrochim. Acta, 2016, 187: 714
doi: 10.1016/j.electacta.2015.11.010
25 Zhao Q Y, Hui X R, Wang Y N, et al. Study on the inhibited corrosion of low alloy steel by biomineralized film in simulative marine atmosphere [J]. Surf. Technol., 2021, 50(6): 272
25 赵倩玉, 惠芯蕊, 王亚楠 等. 模拟海洋大气环境下生物矿化膜抑制低合金钢腐蚀行为研究 [J]. 表面技术, 2021, 50(6): 272
26 Nie L L. Corrosion behavior of pure magnesium, AZ9ID and ZE41 magnesium alloy under thin electrolyte laver based on in situ and nondestructive electrochemical techniques [D]. Hangzhou: Zhejiang University, 2016
26 聂林林. 基于原位无损的电化学技术对纯镁和镁合金AZ91D及ZE41薄液膜腐蚀行为研究 [D]. 杭州: 浙江大学, 2016
27 Xiang T F, Liu J, Liu Q W, et al. Self-healing solid slippery surface with porous structure and enhanced corrosion resistance [J]. Chem. Eng. J., 2021, 417: 128083
doi: 10.1016/j.cej.2020.128083
28 She Z X, Li Q, Zhang L W, et al. Investigation of water transportation behavior of polypropylene coating by using electrochemical impedance spectrum [J]. Surf. Technol., 2021, 50(2): 321
[1] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[2] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[3] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[4] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[5] 王利, 马力, 雷黎, 崔中雨. 基于表面微结构复制与润湿性调控的水下仿生防污技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 242-250.
[6] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[7] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[8] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[9] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[10] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[11] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[12] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[13] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[14] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[15] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.