Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 200-210    DOI: 10.11902/1005.4537.2021.044
  研究报告 本期目录 | 过刊浏览 |
舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究
王炳钦1, 张晓莲2, 雍兴跃1(), 周欢3, 高新华3
1.北京化工大学 有机无机复合材料国家重点实验室 北京 100029
2.海洋化工研究院有限公司 青岛 266071
3.中国舰船研究设计中心 武汉 430064
Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships
WANG Bingqin1, ZHANG Xiaolian2, YONG Xingyue1(), ZHOU Huan3, GAO Xinhua3
1.State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China
2.Marine Chemical Research Institute, Qingdao 266071, China
3.Hina Ship Development and Design Center, Wuhan 430064, China
全文: PDF(5682 KB)   HTML
摘要: 

基于流场、浓度场与电化学动力学过程的耦合,采用COMSOL Multiphysics软件,模拟研究了紫铜 (TP2Y) 与#20钢管道耦接后在静态、流动3.5% (质量分数) NaCl溶液中的电偶腐蚀行为,并预测了静态条件下电偶腐蚀的发展趋势。结果表明,在耦接的异种金属管道中,TP2Y管道作为阴极受到保护,#20钢管道作为阳极受到腐蚀,其腐蚀长度均受管径大小、介质流动以及时间的影响。当管径增大时,电偶对中阴、阳极金属管道电位变化长度逐渐增大;当管道内介质流速增大时,阴阳极管道的内表面电位较静态下开始正移。同时,在靠近耦接位置时,紫铜 (TP2Y) 管道内表面电位急剧变负,#20钢管道内表面电位急剧变正,电流密度最大。在静态条件下,电偶对中金属管道内表面电位随着时间发生负移。在48 h后,电位基本不再发生变化,阴阳极的内表面进入稳定状态;在30 d后,在靠近阳极金属管道法兰处的总厚度减薄约8.87 μm,阳极金属管道的腐蚀长度约为800 mm。

关键词 异种金属管道电偶腐蚀数值模拟电位分布电流分布腐蚀预测    
Abstract

The galvanic corrosion behavior of TP2Y copper pipes coupled with #20 steel pipes in static and flowing 3.5% (mass fraction) NaCl solutions was numerically simulated by means of COMSOL Multiphysics software, while taking the flow field, concentration field and electrochemical dynamics process into consideration, aiming to predict the tendency of galvanic corrosion. The results showed that TP2Y pipes acted as the cathode and #20 steel pipes were the anode when TP2Y pipes were coupled with #20 steel pipes. The corrosion length of #20 steel pipes was dependent on the pipe diameter, flow rate and time. The length of the potential change of the coupled pipes increased gradually with pipe diameters, and that the inner surface potential of the coupled pipes increased with flow rate compared with that under stagnant condition. At the same time, the inner surface potentials of the copper (TP2Y) pipes and #20 steel pipes became negative and positive at the coupling position, respectively. The current density was up to the Max. at the coupling position. Under stagnant condition, the inner surface potentials of the copper (TP2Y) pipes and #20 steel pipes became negative, and did not change until 48 h later. the maximum corroded thickness at the flange of #20 steel would be up to about 8.87 μm, and the corrosion length would be about 800 mm in 30 d.

Key wordsdifferent metallic pipes    galvanic corrosion    numerical simulation    potential distribution    current density distribution    corrosion prediction
收稿日期: 2021-03-08     
ZTFLH:  TG172  
通讯作者: 雍兴跃     E-mail: yongxy@mail.buct.edu.cn
Corresponding author: YONG Xingyue     E-mail: yongxy@mail.buct.edu.cn
作者简介: 王炳钦,男,1994年生,硕士生

引用本文:

王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
Bingqin WANG, Xiaolian ZHANG, Xingyue YONG, Huan ZHOU, Xinhua GAO. Numerical Simulation of Galvanic Corrosion of TP2Y Copper Pipes Coupled with Steel Pipes in a Seawater Pipe Systems of Ships. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 200-210.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.044      或      https://www.jcscp.org/CN/Y2022/V42/I2/200

φΓS
uμeff-px+x(μeffux)+y(μeffux)
vμeff-py+x(μeffuy)+y(μeffvy)
Kμ+μtσkG-ρε
εμ+μtσεεKC1G-C2ρε

μeff=μ+μtμt=ρCμK2ε

G=μt2ux2+vy2+uy+vx2

Cμ=0.09, C1=1.44, C2=1.92, σk=1.0, σε=1.3

表1  公式 (1) 中广义扩散系数Γ和原项S的值[15]
图1  网格划分示意图
图2  紫铜/钢管道绝缘连接时其内表面电位分布及绝缘条件下流动状态对其的影响
图3  紫铜/#20钢管道直接偶接后管径对其内表面电位和电流密度分布变化的影响
图4  直接耦接条件下管径对紫铜/#20钢管道内表面电位及电流密度的影响
图5  紫铜与#20钢管道 (DN50) 直接连接后流速对管道内表面电位分布及电流密度的影响
图6  紫铜/钢管道直接耦接条件下流速对其内表面电位和电流密度的影响
图7  紫铜/#20钢管道3 m/s流动状态下直接偶接后管径对其内表面电位分布和电流密度变化的影响
图8  3 m/s流动状态下直接耦接时管径对紫铜/#20钢管道内表面电位和电流密度的影响
图9  紫铜和#20钢管道直接耦接后其内表面电位分布及电位随着时间的变化
图10  电偶对中作为阳极的#20钢管道 (DN50) 腐蚀深度随时间的变化
图11  紫铜与#20钢形成在3.5%NaCl介质中的电偶腐蚀极化图
图12  模拟与实验结果的对比
1 Yong X Y, Liu J J, Lin Y Z, et al. Application of numerical method to study of flow-induced corrosion—(Ⅱ) Metal corrosion under turbulent condition [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 8
1 雍兴跃, 刘景军, 林玉珍等. 数值计算法在流体腐蚀研究中的应用—(Ⅱ) 湍流条件下金属的腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 8
2 Cheng X D, Sun L F, Cao Z F, et al. Numerical simulation of chloride ion induced corrosion of reinforced concrete structures in marine environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 144
2 程旭东, 孙连方, 曹志烽等. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究 [J]. 中国腐蚀与防护学报, 2015, 35: 144
3 Mohammadian A, Rashetnia R, Lucier G, et al. Numerical simulation and experimental corroboration of galvanic corrosion of mild steel in synthetic concrete pore solution [J]. Cem. Concr. Compos., 2019, 103: 263
4 Saeedikhani M, Wijesinghe S, Blackwood D J. Moving boundary simulation and mechanistic studies of the electrochemical corrosion protection by a damaged zinc coating [J]. Corros. Sci., 2020, 163: 108296
5 Yin L T, Li W C, Wang Y C, et al. Numerical simulation of micro-galvanic corrosion of Al alloys: Effect of density of Al(OH)3 precipitate [J]. Electrochim. Acta, 2019, 324: 134847
6 Si X D, Si H T, Li M Y, et al. Investigation of corrosion behavior at elbow by array electrode and computational fluid dynamics simulation [J]. Mater. Corros., 2020, 71: 1637
7 Ren Y, Cheng G. Research progress on corrosion and protection simulation of metal materials in marine environment [J]. Equip. Environ. Eng., 2019, 16(12): 93
7 任勇, 成光. 海洋环境金属材料腐蚀与防护仿真研究进展 [J]. 装备环境工程, 2019, 16(12): 93
8 Chen Y, Huang W, Dong C C. Research status of numerical simulation of erosion corrosion in seawater pipeline [J]. Equip. Environ. Eng., 2016, 13(4): 48
8 陈艳, 黄威, 董彩常. 海水管路冲刷腐蚀数值模拟研究现状 [J]. 装备环境工程, 2016, 13(4): 48
9 Zheng F, Xing S H, He H, et al. Simulation study on influence of flow velocity and bending angle on corrosion behavior of elbow [J]. Equip. Environ. Eng., 2020, 17(6): 18
9 郑斐, 邢少华, 何华等. 流速和弯曲角度对弯头腐蚀行为影响仿真研究 [J]. 装备环境工程, 2020, 17(6): 18
10 Hu Y T, Dong P F, Jiang L, et al. Corrosion behavior of riveted joints of TC4 Ti-alloy and 316L stainless steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 167
10 胡玉婷, 董鹏飞, 蒋立等. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 167
11 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
11 白苗苗, 白子恒, 蒋立等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
12 Zhang Y, Chen Y L, Wang C G. Study on galvanic corrosion of aluminum alloy related joint in simulated coastal wet atmosphere [J]. Mater. Rep., 2016, 30(10): 152
12 张勇, 陈跃良, 王晨光. 模拟沿海大气环境下铝合金搭接件电偶腐蚀行为研究 [J]. 材料导报, 2016, 30(10): 152
13 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
13 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
14 Chen R H, Zhou L, Zhang C, et al. Potential distributions for coupling of disimillar metallic pipes in 3.5%NaCl solution [J]. Corros. Sci. Prot. Technol., 2019, 31: 483
14 陈日辉, 周林, 张聪等. 异种金属管道耦接引起的电位分布研究 [J]. 腐蚀科学与防护技术, 2019, 31: 483
15 Tao W Q. Numerical Heat Transfer [M]. Xi'an: Xi'an Jiaotong University Press, 1988: 431
15 陶文铨. 数值传热学 [M]. 西安: 西安交通大学出版社, 1988: 431
16 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 186
16 曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 186
17 Lin Y Z, Yang D J. Corrosion and Corrosion Control Principles [M]. 2nd ed. Beijing: Sinopec Press, 2014: 8
17 林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 2版. 北京: 中国石化出版社, 2014: 8
18 Chen M D, Zhang F, Liu Z Y, et al. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater [J]. Acta Metall. Sin., 2018, 54: 1311
18 陈闽东, 张帆, 刘智勇等. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响 [J]. 金属学报, 2018, 54: 1311
19 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
19 董续成, 管方, 徐利婷等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 1
20 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
20 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
21 Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
21 张浩, 杜楠, 周文杰等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517
22 Wang Y, Wu J J, Zhang D. Research progress on corrosion of metal materials caused by Dissimilatory iron-reducing bacteria in seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 389
22 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 389
23 Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
23 张天翼, 柳伟, 范玥铭等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
24 Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1365
24 柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1365
25 Dehghani A, Mostafatabar A H, Bahlakeh G, et al. A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation [J]. J. Mol. Liq., 2020, 316: 113914
26 Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of South China Sea [J]. Acta Metall. Sin., 2013, 49: 1219
26 孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219
27 Ding G Q, Li X Y, Zhang B, et al. Variation of free corrosion potential of several metallic materials in natural seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 543
27 丁国清, 李向阳, 张波等. 金属材料在天然海水中的腐蚀电位及其变化规律 [J]. 中国腐蚀与防护学报, 2019, 39: 543
28 Liu D Y, Wei K J. Corrosion potentials of metals in natural sea water of South China Sea [J]. Corros. Sci. Prot. Technol., 1999, 11: 330
28 刘大扬, 魏开金. 金属在南海海域腐蚀电位研究 [J]. 腐蚀科学与防护技术, 1999, 11: 330
29 Li X G, Dong C F, Xiao K, et al. Corrosion Behavior and Mechanism of Typical Materials in Xisha Ocean Atmosphere Environment [M]. Beijing: Science Press, 2014: 123
29 李晓刚, 董超芳, 肖葵等. 西沙海洋大气环境下典型材料腐蚀/老化行为与机理 [M]. 北京: 科学出版社, 2014: 123
30 Tewary N K, Kundu A, Nandi R, et al. Microstructural characterisation and corrosion performance of old railway girder bridge steel and modern weathering structural steel [J]. Corros. Sci., 2016, 113: 57
31 Gießgen T, Mittelbach A, Höche D, et al. Enhanced predictive corrosion modeling with implicit corrosion products [J]. Mater. Corros., 2019, 70: 2247
32 Sachin P, Baskaran S, Hrishikesh J, et al. An investigation of corrosion of tinplate oil cans during transportation [J]. J. Fail. Anal. Prev., 2019, 19: 1544
33 Kim Y S, Kim J G. Investigation of weld corrosion effects on the stress behavior of a welded joint pipe using numerical simulations[J]. Met. Mater. Int., 2019, 25: 918
34 Zhao Y Y. Cellular automaton simulations of corrosion damage evolution of aluminum [D]. Tianjin: Civil Aviation University of China, 2018: 11
34 赵沅沅. 金属铝腐蚀损伤演化过程的元胞自动机模拟 [D]. 天津: 中国民航大学, 2018: 11
35 Liu Y W, Zhang J, Wei Y H, et al. Effect of different UV intensity on corrosion behavior of carbon steel exposed to simulated Nansha atmospheric environment [J]. Mater. Chem. Phys., 2019, 237: 121855
36 Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J]. Corros. Sci., 1974, 14: 279
37 Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 48
37 刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 48
38 Ju H, Duan J Z, Yang Y F, et al. Mapping the galvanic corrosion of three coupled metal alloys using coupled multielectrode array: Influence of chloride ion concentration [J]. Materials, 2018, 11: 634
39 Li Y D, Li Q, Tang X, et al. Reconstruction and characterization of galvanic corrosion behavior of X80 pipeline steel welded joints [J]. Acta Metall. Sin., 2019, 55: 801
39 李亚东, 李强, 唐晓等. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征 [J]. 金属学报, 2019, 55: 801
40 Dong H, Lian X T, Hu C D, et al. High performance steels: the scenario of theory and technology [J]. Acta Metall. Sin., 2020, 56: 558
40 董瀚, 廉心桐, 胡春东等. 钢的高性能化理论与技术进展 [J]. 金属学报, 2020, 56: 558
41 Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potential of metals in natural river water [J]. Equip. Environ. Eng., 2017, 14(2): 31
41 丁国清, 杨朝晖, 黄桂桥等. 金属材料在天然河水中的腐蚀电位研究 [J]. 装备环境工程, 2017, 14(2): 31
[1] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[2] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[3] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[4] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[5] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[6] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[7] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[8] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[9] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[10] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[11] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[12] 陈亚林, 张伟, 王琦, 王佳. WBE技术研究水线区破损涂层的剥离机制-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
[13] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[14] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[15] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.