|
|
AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 |
刘泽琪, 何潇潇, 祁康, 黄华良() |
武汉工程大学化学与环境工程学院 武汉 430205 |
|
Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution |
LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang() |
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China |
引用本文:
刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
Zeqi LIU,
Xiaoxiao HE,
Kang QI,
Hualiang HUANG.
Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1016-1026.
[1] |
Ji H C, Li Y M, Long H Y, et al. Application and development of magnesium alloy in automobile parts [J]. Found. Technol., 2019, 40: 122
|
[1] |
(纪宏超, 李轶明, 龙海洋 等. 镁合金在汽车零部件中的应用与发展 [J]. 铸造技术, 2019, 40: 122)
|
[2] |
Li M G, Wang M J, Lv W J. Application and status quo of lightweight automotive materials [J]. Auto Time, 2020, (8): 31
|
[2] |
(李洺君, 王明明, 吕文静. 汽车轻量化材料的应用及现状 [J]. 时代汽车, 2020, (8): 31)
|
[3] |
Wei F X. Application analysis of aluminum and magnesium alloys in Dongfeng commercial vehicle engines [J]. Int. Combust. Eng. Part., 2021, (6): 16
|
[3] |
(魏芳玺. 铝、镁合金在东风商用车发动机中的应用分析 [J]. 内燃机与配件, 2021, (6): 16)
|
[4] |
Li G J, Liu X L. Literature review on research and development of automotive lightweight technology [J]. Mater. Sci. Technol., 2020, 28(5): 47
|
[4] |
(李光霁, 刘新玲. 汽车轻量化技术的研究现状综述 [J]. 材料科学与工艺, 2020, 28(5): 47)
|
[5] |
Yang Z X, Liao S H. Application of light alloy in automotive lightweight [J]. Automob. Part., 2021, (1): 107
|
[5] |
(杨甄鑫, 廖抒华. 轻质合金在汽车轻量化中的应用 [J]. 汽车零部件, 2021, (1): 107)
|
[6] |
Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
doi: 10.1016/S0010-938X(03)00109-4
|
[7] |
Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
|
[7] |
(郏义征, 赵明君, 程世婧 等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463)
|
[8] |
Ding F Z, Yu P L, Chang G C, et al. Galvanic corrosion behavior and three protection techniques of magnesium alloy coupled to A6N01S-T5 aluminum alloy in NaCl solution [J]. Mater. Sci. Forum, 2011, 686: 146
doi: 10.4028/www.scientific.net/MSF.686.146
|
[9] |
Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
doi: 10.1016/j.corsci.2020.109203
|
[10] |
Xiao K, Dong C F, Wei D, et al. Galvanic corrosion of magnesium alloy and aluminum alloy by kelvin probe [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31: 204
|
[11] |
Huang D, Hu J, Song G L, et al. Galvanic corrosion and inhibition of GW103 and AZ91D Mg alloys coupled to an Al alloy in an ethylene glycol solution at ambient and elevated temperatures [J]. Corrosion, 2012, 68: 475
doi: 10.5006/i0010-9312-68-6-475
|
[12] |
Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
|
[13] |
Shao L. study on Corrosion Behavior of aluminum alloy in 3.5% NaCl solution and external cathodic current protection[D]. Harbin: Harbin Engineering University, 2012
|
[13] |
(邵麟. 铝合金在 3.5%NaCl溶液中的腐蚀行为研究及外加阴极电流保护[D]. 哈尔滨: 哈尔滨工程大学, 2012)
|
[14] |
Sun D M. The mechanism of pitting corrosion and rare-earth surface modification on aluminum alloy [D]. Shanghai: Fudan University, 2009
|
[14] |
(孙道明. 铝合金点蚀过程与稀土沉积的机理研究 [D]. 上海: 复旦大学, 2009)
|
[15] |
Wang Y H, Zhen C, Zhang Z, et al. Corrosion behavior of an AZ91D magnesium alloy under a heterogeneous electrolyte layer [J]. PLoS One, 2020, 15: e0234981
doi: 10.1371/journal.pone.0234981
|
[16] |
Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
|
[16] |
(王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
|
[17] |
Yang W L, Liu Z Q, Huang H L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water [J]. Corros. Sci., 2021, 188: 109562
doi: 10.1016/j.corsci.2021.109562
|
[18] |
Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2017
|
[18] |
(李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
|
[19] |
Huang D B. The investigation on inhibitors for magnesium and its alloys in ethylene glycol and NaCl solutions [D]. Wuhan: Huazhong University of Science and Technology, 2012
|
[19] |
(黄道兵. 乙二醇和NaCl溶液中镁合金缓蚀剂及其机理研究 [D]. 武汉: 华中科技大学, 2012)
|
[20] |
Liu W D, Cao F H, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solutions [J]. Corrosion, 2012, 68: 045001
|
[21] |
Dong J H, Tan L L, Ren Y B, et al. Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank's solution [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 305
doi: 10.1007/s40195-018-0750-4
|
[22] |
Huang H L, Yang W L. Corrosion behavior of AZ91D magnesium alloy in distilled water [J]. Arab. J. Chem., 2020, 13: 6044
doi: 10.1016/j.arabjc.2020.05.004
|
[23] |
Verdier S, van der Laak N, Delalande S, et al. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS [J]. Appl. Surf. Sci., 2004, 235: 513
doi: 10.1016/j.apsusc.2004.03.250
|
[24] |
Wang L, Shinohara T, Zhang B P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J]. Appl. Surf. Sci., 2010, 256: 5807
doi: 10.1016/j.apsusc.2010.02.058
|
[25] |
Kazansky L P, Pronin Y E, Arkhipushkin I A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface [J]. Corros. Sci., 2014, 89: 21
doi: 10.1016/j.corsci.2014.07.055
|
[26] |
Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
|
[26] |
(于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553)
|
[27] |
Liu W F, Sun G, Chen Y Z, et al. Effect of Cl- concentration and pH value on the corrosion behavior of AZ31 magnesium alloy [J]. J. Taiyuan Univ. Sci. Technol., 2009, 30: 221
|
[27] |
(刘文峰, 孙钢, 陈永哲 等. Cl-浓度和pH值对AZ31镁合金腐蚀行为的影响 [J]. 太原科技大学学报, 2009, 30: 221)
|
[28] |
Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Found. Equip., 2007, (3): 19
|
[28] |
(张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备研究, 2007, (3): 19)
|
[29] |
Mehta D S, Masood S H, Song W Q. Investigation of wear properties of magnesium and aluminum alloys for automotive applications [J]. J. Mater. Process. Technol., 2004, 155/156: 1526
|
[30] |
Zhang J, Zhang T, Shao Y W, et al. Crevice corrosion behavior of 5083 and 6061 aluminum alloys [J]. Corros. Sci. Prot. Technol., 2014, 26: 125
|
[30] |
(张晋, 张涛, 邵亚薇 等. 5083和6061铝合金缝隙腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26: 125)
|
[31] |
Zhang M. Research on corrosion behavior of printed circuit boards and its influencing factors [D]. Xiamen: Xiamen University, 2008
|
[31] |
(张敏. 印刷电路板的腐蚀行为及其影响因素研究 [D]. 厦门: 厦门大学, 2008)
|
[32] |
Li P. Eroding mechanism and control of airplane aluminous alloy frame component [J]. Total Corros. Control, 2006, 20(2): 36
|
[32] |
(李鹏. 飞机铝合金结构件的腐蚀机理与控制 [J]. 全面腐蚀控制, 2006, 20(2): 36)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|