Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1016-1026          DOI: 10.11902/1005.4537.2021.355
  研究报告 本期目录 | 过刊浏览 |
AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究
刘泽琪, 何潇潇, 祁康, 黄华良()
武汉工程大学化学与环境工程学院 武汉 430205
Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution
LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang()
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
引用本文:

刘泽琪, 何潇潇, 祁康, 黄华良. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
Zeqi LIU, Xiaoxiao HE, Kang QI, Hualiang HUANG. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1016-1026.

全文: PDF(9168 KB)   HTML
摘要: 

采用电化学方法和表面分析技术研究了AZ91D镁合金与2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为。对于镁合金,耦合后始终为阳极,腐蚀电位正移,腐蚀速率增加,这可能归结为它们之间的电偶效应显著加速了其阴极过程。对于铝合金,耦合后始终为阴极,腐蚀电位也正移,腐蚀速率增加,这可能归结为它们之间的电偶效应抑制了其表面钝化膜的形成。随着浸泡时间的延长,它们之间的耦合电位先正移后逐渐负移,电偶电流密度先增加后减小,最后逐渐增加并达到相对稳定的状态。为汽车发动机材料的选择、设计及其电偶腐蚀的抑制提供基本理论依据。

关键词 AZ91D镁合金2002铝合金电偶腐蚀SEMXPS    
Abstract

The galvanic corrosion behavior for the galvanic pair of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution was studied by means of electrochemical methods and surface analysis techniques. For the galvanic pair of AZ91D Mg-alloy/2002 Al-alloy in the NaCl solution, Mg-alloy always acted as anode, thus its corrosion potential positively shifted, while corrosion rate increased. This could be attributed to that the galvanic effect between the two alloys significantly accelerated its cathode process. On the other hand, Al-alloy, always acted as cathode, its corrosion potential also positively shifted, and the corrosion rate increased. This could be ascribed to that the galvanic effect between the two alloys inhibited the formation of the passivation film on its surface. With the extension of immersion time, the coupling potential of the two alloys shifted towards positive first and then gradually negative, and finally reached a relatively stable state. The galvanic current densities increased first and then decreased and increased gradually again, and finally reached a relatively stable state. The research results not only enriched the knowledge of galvanic corrosion, but also provided a theoretical basis for the selection and design of automotive engine materials and the inhibition of the galvanic corrosion of multi-metal pairs.

Key wordsAZ91D Mg-alloy    2002 Al-alloy    galvanic corrosion    SEM    XPS
收稿日期: 2021-12-10     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51401151);湖北省自然科学基金(2018CFB525);武汉工程大学研究生创新基金(CX2021345);武汉工程大学校长基金(XZJJ2021074)
作者简介: 刘泽琪,女,1996年生,硕士生
图1  30 ℃下0.5 mg/L NaCl溶液中AZ91D镁合金与2002铝合金的电位及电位差随时间的变化
图2  未耦合和耦合后再断开条件下AZ91D镁合金和2002铝合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h后的极化曲线
MaterialConditionBc / mV·dec-1Icorr / A·cm-2Ecorr / V
Mg-alloyUncoupling-215.507.43×10-7-1.43
Coupling-144.932.22×10-6-1.42
Al-alloyUncoupling-233.561.57×10-6-0.51
Coupling-554.994.36×10-6-0.49
表1  未耦合和耦合后再断开条件下AZ91D镁合金和2002铝合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h后的极化曲线拟合参数
图3  未耦合和耦合后再断开条件下AZ91D镁合金与2002铝合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h后的电化学阻抗谱
图4  用来拟合测试EIS数据的等效电路
MaterialCondition

Rs

Ω·cm2

Cf1

F·cm-2

Rf1

Ω·cm2

CPEf2

S·snf1·cm-2

nf2

Rf2

Ω·cm2

CPEdl

S·snf2·cm-2

ndl

Rct

Ω·cm2

Rp

Ω·cm2

Mg-alloyUncoupling124.37------8.27×10-80.93301301.38×10-50.861691547045
Coupling94.86------6.59×10-80.97129281.40×10-50.751043123359
Al-alloyUncoupling68.302.86×10-7128401.31×10-70.9225145.05×10-50.78609454624808
Coupling24.561.10×10-817174.48×10-50.8933133.87×10-40.782497030000
表2  未耦合和耦合后再断开条件下AZ91D镁合金与2002铝合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h的EIS拟合结果
图5  耦合后再断开条件下AZ91D镁合金和2002铝合金在30 ℃,0.5 mg/L NaCl溶液中不同浸泡时间的电化学阻抗谱
Materialt / h

Rs

Ω·cm2

Cf1

F·cm-2

Rf1

Ω·cm2

CPEf2

S·snf1·cm-2

nf2

Rf2

Ω·cm2

CPEdl

S·snf2·cm-2

ndl

Rct

Ω·cm2

Rp

Ω·cm2

AZ91D Mg-alloy2494.86------6.59×10-80.97129281.40×10-50.751043123359
4884.75------9.05×10-90.95105242.79×10-50.862151932103
7259.82------2.54×10-80.9663161.20×10-50.891376420080
9649.66------1.23×10-80.9724495.09×10-40.751481417263
2002 Al-alloy2424.561.10×10-817174.48×10-50.8933133.87×10-40.782497030000
4888.151.33×10-831086.49×10-50.87152522.13×10-40.777666495024
7236.061.21×10-831066.11×10-50.89146112.63×10-40.871809335810
9662.881.41×10-829541.73×10-50.90142884.08×10-30.94856325805
表3  耦合条件下AZ91D镁合金和2002铝合金在30 ℃,0.5 mg/L NaCl溶液中不同浸泡时间的EIS拟合结果
图6  AZ91D镁合金与2002铝合金在30 ℃,0.5 mg/L NaCl溶液中浸泡96 h后的耦合电位和电偶电流密度随时间的变化曲线
图7  未耦合和耦合条件下AZ91D镁合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h后的SEM形貌
图8  未耦合和耦合条件下2002铝合金在30 ℃, 0.5 mg/L NaCl溶液中浸泡24 h后的SEM形貌
图9  耦合条件下AZ91D镁合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h后表面膜的XPS谱
图10  耦合条件下2002铝合金在30 ℃,0.5 mg/L NaCl溶液中浸泡24 h后表面膜的XPS谱
图11  AZ91D镁合金与2002铝合金在30 ℃,0.5 mg/L NaCl溶液中的电偶腐蚀机理示意图
[1] Ji H C, Li Y M, Long H Y, et al. Application and development of magnesium alloy in automobile parts [J]. Found. Technol., 2019, 40: 122
[1] (纪宏超, 李轶明, 龙海洋 等. 镁合金在汽车零部件中的应用与发展 [J]. 铸造技术, 2019, 40: 122)
[2] Li M G, Wang M J, Lv W J. Application and status quo of lightweight automotive materials [J]. Auto Time, 2020, (8): 31
[2] (李洺君, 王明明, 吕文静. 汽车轻量化材料的应用及现状 [J]. 时代汽车, 2020, (8): 31)
[3] Wei F X. Application analysis of aluminum and magnesium alloys in Dongfeng commercial vehicle engines [J]. Int. Combust. Eng. Part., 2021, (6): 16
[3] (魏芳玺. 铝、镁合金在东风商用车发动机中的应用分析 [J]. 内燃机与配件, 2021, (6): 16)
[4] Li G J, Liu X L. Literature review on research and development of automotive lightweight technology [J]. Mater. Sci. Technol., 2020, 28(5): 47
[4] (李光霁, 刘新玲. 汽车轻量化技术的研究现状综述 [J]. 材料科学与工艺, 2020, 28(5): 47)
[5] Yang Z X, Liao S H. Application of light alloy in automotive lightweight [J]. Automob. Part., 2021, (1): 107
[5] (杨甄鑫, 廖抒华. 轻质合金在汽车轻量化中的应用 [J]. 汽车零部件, 2021, (1): 107)
[6] Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
doi: 10.1016/S0010-938X(03)00109-4
[7] Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 463
[7] (郏义征, 赵明君, 程世婧 等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 463)
[8] Ding F Z, Yu P L, Chang G C, et al. Galvanic corrosion behavior and three protection techniques of magnesium alloy coupled to A6N01S-T5 aluminum alloy in NaCl solution [J]. Mater. Sci. Forum, 2011, 686: 146
doi: 10.4028/www.scientific.net/MSF.686.146
[9] Lin Y J, Lin C S. Galvanic corrosion behavior of friction stir welded AZ31B magnesium alloy and 6N01 aluminum alloy dissimilar joints [J]. Corros. Sci., 2021, 180: 109203
doi: 10.1016/j.corsci.2020.109203
[10] Xiao K, Dong C F, Wei D, et al. Galvanic corrosion of magnesium alloy and aluminum alloy by kelvin probe [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31: 204
[11] Huang D, Hu J, Song G L, et al. Galvanic corrosion and inhibition of GW103 and AZ91D Mg alloys coupled to an Al alloy in an ethylene glycol solution at ambient and elevated temperatures [J]. Corrosion, 2012, 68: 475
doi: 10.5006/i0010-9312-68-6-475
[12] Tian H Y, Fan L, Li Y Z, et al. Effect of NH4+ on the pitting corrosion behavior of 316 stainless steel in the chloride environment [J]. J. Electroanal. Chem., 2021, 894: 115368
doi: 10.1016/j.jelechem.2021.115368
[13] Shao L. study on Corrosion Behavior of aluminum alloy in 3.5% NaCl solution and external cathodic current protection[D]. Harbin: Harbin Engineering University, 2012
[13] (邵麟. 铝合金在 3.5%NaCl溶液中的腐蚀行为研究及外加阴极电流保护[D]. 哈尔滨: 哈尔滨工程大学, 2012)
[14] Sun D M. The mechanism of pitting corrosion and rare-earth surface modification on aluminum alloy [D]. Shanghai: Fudan University, 2009
[14] (孙道明. 铝合金点蚀过程与稀土沉积的机理研究 [D]. 上海: 复旦大学, 2009)
[15] Wang Y H, Zhen C, Zhang Z, et al. Corrosion behavior of an AZ91D magnesium alloy under a heterogeneous electrolyte layer [J]. PLoS One, 2020, 15: e0234981
doi: 10.1371/journal.pone.0234981
[16] Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
[16] (王标, 杜楠, 张浩 等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338)
[17] Yang W L, Liu Z Q, Huang H L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water [J]. Corros. Sci., 2021, 188: 109562
doi: 10.1016/j.corsci.2021.109562
[18] Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution [D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2017
[18] (李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2017)
[19] Huang D B. The investigation on inhibitors for magnesium and its alloys in ethylene glycol and NaCl solutions [D]. Wuhan: Huazhong University of Science and Technology, 2012
[19] (黄道兵. 乙二醇和NaCl溶液中镁合金缓蚀剂及其机理研究 [D]. 武汉: 华中科技大学, 2012)
[20] Liu W D, Cao F H, Chen A, et al. Effect of chloride ion concentration on electrochemical behavior and corrosion product of AM60 magnesium alloy in aqueous solutions [J]. Corrosion, 2012, 68: 045001
[21] Dong J H, Tan L L, Ren Y B, et al. Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank's solution [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 305
doi: 10.1007/s40195-018-0750-4
[22] Huang H L, Yang W L. Corrosion behavior of AZ91D magnesium alloy in distilled water [J]. Arab. J. Chem., 2020, 13: 6044
doi: 10.1016/j.arabjc.2020.05.004
[23] Verdier S, van der Laak N, Delalande S, et al. The surface reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS [J]. Appl. Surf. Sci., 2004, 235: 513
doi: 10.1016/j.apsusc.2004.03.250
[24] Wang L, Shinohara T, Zhang B P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution [J]. Appl. Surf. Sci., 2010, 256: 5807
doi: 10.1016/j.apsusc.2010.02.058
[25] Kazansky L P, Pronin Y E, Arkhipushkin I A. XPS study of adsorption of 2-mercaptobenzothiazole on a brass surface [J]. Corros. Sci., 2014, 89: 21
doi: 10.1016/j.corsci.2014.07.055
[26] Yu H R, Zhang W L, Cui Z Y. Difference in corrosion behavior of four Mg-alloys in Cl--NH4+-NO3- containing solution [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 553
[26] (于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究 [J]. 中国腐蚀与防护学报, 2020, 40: 553)
[27] Liu W F, Sun G, Chen Y Z, et al. Effect of Cl- concentration and pH value on the corrosion behavior of AZ31 magnesium alloy [J]. J. Taiyuan Univ. Sci. Technol., 2009, 30: 221
[27] (刘文峰, 孙钢, 陈永哲 等. Cl-浓度和pH值对AZ31镁合金腐蚀行为的影响 [J]. 太原科技大学学报, 2009, 30: 221)
[28] Zhang H R, Hao Y. Corrosion behavior of AZ91D magnesium alloy in Cl- solution [J]. Res. Found. Equip., 2007, (3): 19
[28] (张汉茹, 郝远. AZ91D镁合金在含Cl-溶液中腐蚀机理的研究 [J]. 铸造设备研究, 2007, (3): 19)
[29] Mehta D S, Masood S H, Song W Q. Investigation of wear properties of magnesium and aluminum alloys for automotive applications [J]. J. Mater. Process. Technol., 2004, 155/156: 1526
[30] Zhang J, Zhang T, Shao Y W, et al. Crevice corrosion behavior of 5083 and 6061 aluminum alloys [J]. Corros. Sci. Prot. Technol., 2014, 26: 125
[30] (张晋, 张涛, 邵亚薇 等. 5083和6061铝合金缝隙腐蚀行为的研究 [J]. 腐蚀科学与防护技术, 2014, 26: 125)
[31] Zhang M. Research on corrosion behavior of printed circuit boards and its influencing factors [D]. Xiamen: Xiamen University, 2008
[31] (张敏. 印刷电路板的腐蚀行为及其影响因素研究 [D]. 厦门: 厦门大学, 2008)
[32] Li P. Eroding mechanism and control of airplane aluminous alloy frame component [J]. Total Corros. Control, 2006, 20(2): 36
[32] (李鹏. 飞机铝合金结构件的腐蚀机理与控制 [J]. 全面腐蚀控制, 2006, 20(2): 36)
[1] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[2] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[3] 邢少华, 刘仲晔, 刘近增, 白舒宇, 钱峣, 张大磊. ZCuSn5Pb5Zn5/B10偶对在流动海水中的腐蚀规律与机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[4] 张勤号, 朱泽洁, 蔡浩冉, 李鑫冉, 孟宪泽, 李昊, 伍廉奎, 罗荘竹, 曹发和. Pt/IrO x -pH超微电化学传感器性能探究及其在铜/不锈钢电偶腐蚀研究中的应用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[5] 倪雨朦, 于英杰, 严慧, 王嵬, 李瑛. 铜铝/镍石墨可磨耗封严涂层相选择性溶解机制有限元研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[6] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[7] 邢少华, 刘近增, 白舒宇, 钱峣, 张大磊, 马力. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[8] 刘近增, 邢少华, 钱峣, 张大磊, 马力. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[9] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[10] 田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[11] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[12] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[13] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[14] 丁奕, 王力伟, 刘德运, 王昕. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[15] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.