Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 281-287    DOI: 10.11902/1005.4537.2021.048
  研究报告 本期目录 | 过刊浏览 |
不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究
蔡建敏1, 关蕾1(), 李雨2
1.广东工业大学 省部共建精密电子制造技术与装备国家重点实验室 广州市非传统制造技术及 装备重点实验室 广州 510006
2.广东省工业分析检测中心 广州 510651
Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel
CAI Jianmin1, GUAN Lei1(), LI Yu2
1.Guangzhou Key Laboratory of Nontraditional Machining and Equipment, State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2.Guangdong Industrial Analysis and Testing Center, Guangdong Academy of Science, Guangzhou 510651, China
全文: PDF(11397 KB)   HTML
摘要: 

为探究车用钢铝电偶腐蚀的表面防护工艺效果,分别对车用6016铝合金和DC01碳钢进行钛锆转化和热镀锌处理,采用极化测试、电化学噪声技术和扫描电镜分析不同表面处理的电偶腐蚀速率及腐蚀形态。结果表明:未处理的6016铝合金与DC01碳钢之间存在显著的电偶腐蚀,铝合金作为阳极,偶接24 h就表现出全面腐蚀;仅对铝合金钛锆转化处理,铝合金仍作为阳极,其腐蚀形态以点蚀为主,电偶电流略微降低,防护效果不明显;仅对碳钢镀锌处理,发生极性反转,铝合金转变为阴极受到保护,但铝合金表面富铁夹杂诱发了点蚀坑的形成;对铝合金钛锆转化处理的同时对钢镀锌,电偶电流降低两个数量级,电偶腐蚀防护效果显著。

关键词 轻量化表面处理电偶腐蚀    
Abstract

Surface treatments of titanium-zirconium conversion and hot-dip galvanization were applied on 6016 Al-alloy and DC01 carbon steel, respectively. Then the galvanic corrosion behavior in 5% NaCl solution for the couple of 6016 Al-alloy and DC01 carbon steel without and with pre-surface treatment was comparatively studied by means of polarization measurement , electrochemical noise measurement and scanning electron microscope (SEM). The results showed that the galvanic corrosion between the bare 6016 Al-alloy and bare DC01 carbon steel was severe. The merely titanium-zirconium conversion treatment on 6016 Al-alloy cannot solve the problem of galvanic corrosion of the couple of the surface treated 6016 Al-alloy with bare DC01 carbon steel, while the treated 6016 Al-alloy suffered from pitting corrosion. However, for the couple of bare 6016 Al-alloy and the galvanized steel, the former one could become a cathode, which can be protected by the galvanized steel, whereas, the iron-rich inclusions on 6016 Al-alloy surface induced the formation of pits. However, the galvanic current can be reduced by two orders for the couple of the galvanized DC01 steel and the titanium-zirconium conversion treated 6016 Al-alloy.

Key wordslight weight    surface treatment    galvanic corrosion
收稿日期: 2021-03-10     
ZTFLH:  TG174  
基金资助:国家自然科学基金(52001074);广东省自然科学基金(2021A1515010967);广州市科技计划项目(202102020723);中国博士后科学基金(2020M682929)
通讯作者: 关蕾     E-mail: lguan@gdut.edu.cn
Corresponding author: GUAN Lei     E-mail: lguan@gdut.edu.cn
作者简介: 蔡建敏,男,1995年,硕士生

引用本文:

蔡建敏, 关蕾, 李雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
Jianmin CAI, Lei GUAN, Yu LI. Effect of Surface Treatment on Galvanic Corrosion of 6061 Al-alloy and DC01 Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 281-287.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.048      或      https://www.jcscp.org/CN/Y2022/V42/I2/281

图1  6016铝合金经钛锆转化处理和DC01钢热镀锌后的形貌
图2  6016铝合金和DC01钢表面处理前后的极化曲线
MaterialEcorrV vs.SCEIcorrA·cm-2bamV·dec-1bcmV·dec-1RpΩ·cm2
6016 Al-alloy-0.7131.512×10-614.45252.113924.8
Ti-Zr conversion 6016 Al-alloy-0.6821.226×10-623.91317.727875.6
DC01 steel-0.5232.198×10-573.10424.321236.4
Galvanized steel-1.0033.443×10-527.41181.49300.3
表1  极化曲线拟合结果
图3  6016铝合金 /DC01钢电偶对的电偶电流随时间变化曲线
图4  6016铝合金与DC01钢发生电偶腐蚀和自腐蚀24 h后腐蚀形貌及其金属间化合物EDS分析
图5  钛锆转化铝合金/DC01钢电偶对的电偶电流随时间变化曲线
图6  钛锆转化铝合金与DC01钢偶接24 h后的腐蚀形貌
图7  6016铝合金/镀锌钢电偶对的电偶电流随时间变化曲线
图8  6016铝合金/镀锌钢电偶对24 h后腐蚀形貌
图9  钛锆转化铝合金/镀锌钢电偶对的电偶电流随时间变化曲线
图10  钛锆转化铝合金/镀锌钢电偶对24 h后腐蚀形貌
1 Li Y B, Ma Y W, Lou M, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. J. Mech. Eng., 2016, 52(24): 1
1 李永兵, 马运五, 楼铭等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1
2 Arya C, Vassie P R W. Influence of cathode-to-anode area ratio and separation distance on galvanic corrosion currents of steel in concrete containing chlorides [J]. Cem. Concr. Res., 1995, 25: 989
3 Prayitno D, Irsyad M. Effect of ratio of surface area on the corrosion rate [J]. Sinergi, 2018, 22: 7
4 Yao X, Cai C, Li J F, et al. Early stage galvanic corrosion of 5383 Al alloy coupled with 907 steel and aluminum bronze in 3.5%NaCl solution [J]. Corros. Sci. Prot. Technol., 2015, 27: 419
4 姚希, 蔡超, 李劲风等. 5383铝合金与907钢和铝青铜早期电偶腐蚀的平面分布 [J]. 腐蚀科学与防护技术, 2015, 27: 419
5 Jia J X, Song G L, Atrens A. Influence of geometry on galvanic corrosion of AZ91D coupled to steel [J]. Corros. Sci., 2006, 48: 2133
6 Oh S, Kim Y, Jung K, et al. Effects of temperature and operation parameters on the galvanic corrosion of Cu coupled to Au in organic solderability preservatives process [J]. Met. Mater. Int., 2017, 23: 290
7 Cui T F, Liu D X, Shi P A, et al. Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy [J]. Mater. Corros., 2016, 67: 72
8 Hur S Y, Kim K T, Yoo Y R, et al. Effects of NaCl concentration and solution temperature on the galvanic corrosion between CFRP and AA7075T6 [J]. Corros. Sci. Technol., 2020, 19: 75
9 Zou S W, Qu Y C, Zhou W L, et al. Anode characteristics of Al/Ti galvanic couple in a salt spray environment [J]. Mater. Corros., 2019, 70: 2311
10 Zhao X H, Guo Q Z, Du K Q, et al. Galvanic corrosion behavior of couples of hot rolled steel SS400 and cold rolled steel ST12 with two coatings [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 86
10 赵晓宏, 郭泉忠, 杜克勤等. 不同涂层处理的汽车紧固件用ST12冷轧钢与SS400热轧钢的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 86
11 Kosaba T, Muto I, Sugawara Y. Effect of anodizing on galvanic corrosion resistance of Al coupled to Fe or type 430 stainless steel in diluted synthetic seawater [J]. Corros. Sci., 2021, 179: 109145
12 Zhang B, Zhao H, Dong Y, et al. Preparation and performance of colored Ti-Zr conversion coating on 2024 aluminum alloy [J]. Mater. Prot., 2018, 51(7): 1
12 张博, 赵焕, 董宇等. 2024铝合金表面有色钛锆转化膜的制备与性能研究 [J]. 材料保护, 2018, 51(7): 1
13 Qiao Y L, Yu D, Zhou S L, et al. Performances of Ti-Zr conversion coating on aluminum alloy [J]. Mater. Prot., 2016, 49(12): 54
13 乔永莲, 宇董, 周石磊等. 铝合金表面钛锆转化膜的性能 [J]. 材料保护, 2016, 49(12): 54
14 Sun F L, Li X G, Lu L, et al. Corrosion behavior of 5052 and 6061 aluminum alloys in deep ocean environment of south china sea [J]. Acta Metall. Sin., 2013, 49: 1219
14 孙飞龙, 李晓刚, 卢琳等. 5052和6061铝合金在中国南海深海环境下的腐蚀行为研究 [J]. 金属学报, 2013, 49: 1219
15 Katkar V A, Gunasekaran G. Galvanic corrosion of AA6061 with other ship building materials in seawater [J]. Corrosion, 2016, 72: 400
16 Donatus U, Thompson G E, Zhou X R. Effect of near-ambient temperature changes on the galvanic corrosion of an AA2024-T3 and mild steel couple [J]. J. Electrochem. Soc., 2015, 162: C42
17 Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium [J]. Surf. Coat. Technol., 2004, 184: 278
18 Deng J Q, Liu D X, Tang C B, et al. Prevention of galvanic corrosion between TC16 Titanium alloy and 18Ni steel by surface modification [J]. Mater. Prot., 2011, 44(5): 69
18 邓建青, 刘道新, 唐长斌等. 表面处理对TC16钛合金和18Ni钢电偶对的腐蚀防护 [J]. 材料保护, 2011, 44(5): 69
19 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 106
19 曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 106
20 Golru S S, Attar M M, Ramezanzadeh B. Morphological analysis and corrosion performance of zirconium based conversion coating on the aluminum alloy 1050 [J]. J. Ind. Eng. Chem., 2015, 24: 233
[1] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[2] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[3] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[4] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[5] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[6] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[7] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[8] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[11] 左银泽, 许宝华, 朱桂生, 黄诚, 冯清, 陈亮, 李照磊, 高延敏. 自组装PFOA分子膜对带锈Q235钢腐蚀行为影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 81-86.
[12] 左银泽, 陈亮, 冯清, 高延敏. PFOA/硅烷偶联剂分子自组装膜对环氧带锈涂层性能影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[13] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[14] 赵欣,胡裕龙,董赋,张晓东,王智峤. 湿态电绝缘对电偶腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[15] 王思齐,祝郦伟,刘福春,韩恩厚,王震宇,钱洲亥. 磷酸对氯乙烯-丙烯酸共聚物带锈涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 281-286.